These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
805 related articles for article (PubMed ID: 18752628)
1. Yeast selection for fuel ethanol production in Brazil. Basso LC; de Amorim HV; de Oliveira AJ; Lopes ML FEMS Yeast Res; 2008 Nov; 8(7):1155-63. PubMed ID: 18752628 [TBL] [Abstract][Full Text] [Related]
2. Yeast population dynamics of industrial fuel-ethanol fermentation process assessed by PCR-fingerprinting. da Silva-Filho EA; Brito dos Santos SK; Resende Ado M; de Morais JO; de Morais MA; Ardaillon Simões D Antonie Van Leeuwenhoek; 2005 Jul; 88(1):13-23. PubMed ID: 15928973 [TBL] [Abstract][Full Text] [Related]
3. Identification of Dekkera bruxellensis as a major contaminant yeast in continuous fuel ethanol fermentation. de Souza Liberal AT; Basílio AC; do Monte Resende A; Brasileiro BT; da Silva-Filho EA; de Morais JO; Simões DA; de Morais MA J Appl Microbiol; 2007 Feb; 102(2):538-47. PubMed ID: 17241360 [TBL] [Abstract][Full Text] [Related]
4. Microsatellite marker-based assessment of the biodiversity of native bioethanol yeast strains. Antonangelo AT; Alonso DP; Ribolla PE; Colombi D Yeast; 2013 Aug; 30(8):307-17. PubMed ID: 23765797 [TBL] [Abstract][Full Text] [Related]
5. Scientific challenges of bioethanol production in Brazil. Amorim HV; Lopes ML; de Castro Oliveira JV; Buckeridge MS; Goldman GH Appl Microbiol Biotechnol; 2011 Sep; 91(5):1267-75. PubMed ID: 21735264 [TBL] [Abstract][Full Text] [Related]
6. Cell recycling during repeated very high gravity bio-ethanol fermentations using the industrial Saccharomyces cerevisiae strain PE-2. Pereira FB; Gomes DG; Guimarães PM; Teixeira JA; Domingues L Biotechnol Lett; 2012 Jan; 34(1):45-53. PubMed ID: 21898130 [TBL] [Abstract][Full Text] [Related]
7. Improvement of Brazilian bioethanol production - Challenges and perspectives on the identification and genetic modification of new strains of Saccharomyces cerevisiae yeasts isolated during ethanol process. Paulino de Souza J; Dias do Prado C; Eleutherio ECA; Bonatto D; Malavazi I; Ferreira da Cunha A Fungal Biol; 2018 Jun; 122(6):583-591. PubMed ID: 29801803 [TBL] [Abstract][Full Text] [Related]
8. Continuous ethanol fermentation from non-sulfuric acid-washed molasses using traditional stirred tank reactors and the flocculating yeast strain KF-7. Tang YQ; An MZ; Zhong YL; Shigeru M; Wu XL; Kida K J Biosci Bioeng; 2010 Jan; 109(1):41-6. PubMed ID: 20129080 [TBL] [Abstract][Full Text] [Related]
9. Transcriptional profiling of Brazilian Saccharomyces cerevisiae strains selected for semi-continuous fermentation of sugarcane must. Brown NA; de Castro PA; de Castro Pimentel Figueiredo B; Savoldi M; Buckeridge MS; Lopes ML; de Lima Paullilo SC; Borges EP; Amorim HV; Goldman MH; Bonatto D; Malavazi I; Goldman GH FEMS Yeast Res; 2013 May; 13(3):277-90. PubMed ID: 23360418 [TBL] [Abstract][Full Text] [Related]
11. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076 [TBL] [Abstract][Full Text] [Related]
12. The physiological characteristics of the yeast Dekkera bruxellensis in fully fermentative conditions with cell recycling and in mixed cultures with Saccharomyces cerevisiae. Pereira LF; Bassi AP; Avansini SH; Neto AG; Brasileiro BT; Ceccato-Antonini SR; de Morais MA Antonie Van Leeuwenhoek; 2012 Mar; 101(3):529-39. PubMed ID: 22041979 [TBL] [Abstract][Full Text] [Related]
13. Isolation of Saccharomyces cerevisiae strains producing higher levels of flavoring compounds for production of "cachaça" the Brazilian sugarcane spirit. Vicente MA; Fietto LG; Castro IM; dos Santos AN; Coutrim MX; Brandão RL Int J Food Microbiol; 2006 Apr; 108(1):51-9. PubMed ID: 16481057 [TBL] [Abstract][Full Text] [Related]
14. The fermentation of sugarcane molasses by Dekkera bruxellensis and the mobilization of reserve carbohydrates. Pereira LF; Lucatti E; Basso LC; de Morais MA Antonie Van Leeuwenhoek; 2014 Mar; 105(3):481-9. PubMed ID: 24370978 [TBL] [Abstract][Full Text] [Related]
15. [Ethanol tolerance in yeast: molecular mechanisms and genetic engineering]. Zhang Q; Zhao X; Jiang R; Li Q; Bai F Sheng Wu Gong Cheng Xue Bao; 2009 Apr; 25(4):481-7. PubMed ID: 19637619 [TBL] [Abstract][Full Text] [Related]
16. The ability to use nitrate confers advantage to Dekkera bruxellensis over S. cerevisiae and can explain its adaptation to industrial fermentation processes. de Barros Pita W; Leite FC; de Souza Liberal AT; Simões DA; de Morais MA Antonie Van Leeuwenhoek; 2011 Jun; 100(1):99-107. PubMed ID: 21350883 [TBL] [Abstract][Full Text] [Related]
17. Technological options for biological fuel ethanol. Vertès AA; Inui M; Yukawa H J Mol Microbiol Biotechnol; 2008; 15(1):16-30. PubMed ID: 18349547 [TBL] [Abstract][Full Text] [Related]
18. Optimization of process parameters for ethanol production from sugar cane molasses by Zymomonas mobilis using response surface methodology and genetic algorithm. Maiti B; Rathore A; Srivastava S; Shekhawat M; Srivastava P Appl Microbiol Biotechnol; 2011 Apr; 90(1):385-95. PubMed ID: 21336926 [TBL] [Abstract][Full Text] [Related]
19. Ethanol production by fermentation using immobilized cells of Saccharomyces cerevisiae in cashew apple bagasse. Pacheco AM; Gondim DR; Gonçalves LR Appl Biochem Biotechnol; 2010 May; 161(1-8):209-17. PubMed ID: 19798473 [TBL] [Abstract][Full Text] [Related]
20. Isolation by genetic and physiological characteristics of a fuel-ethanol fermentative Saccharomyces cerevisiae strain with potential for genetic manipulation. da Silva Filho EA; de Melo HF; Antunes DF; dos Santos SK; do Monte Resende A; Simões DA; de Morais MA J Ind Microbiol Biotechnol; 2005 Oct; 32(10):481-6. PubMed ID: 16175407 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]