BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 18752832)

  • 1. Attenuation of lead leachability in shooting range soils using poultry waste amendments in combination with indigenous plant species.
    Hashimoto Y; Matsufuru H; Sato T
    Chemosphere; 2008 Oct; 73(5):643-9. PubMed ID: 18752832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impacts of chemical amendment and plant growth on lead speciation and enzyme activities in a shooting range soil: an x-ray absorption fine structure investigation.
    Hashimoto Y; Matsufuru H; Takaoka M; Tanida H; Sato T
    J Environ Qual; 2009; 38(4):1420-8. PubMed ID: 19465717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incomplete transformations of Pb to pyromorphite by phosphate-induced immobilization investigated by X-ray absorption fine structure (XAFS) spectroscopy.
    Hashimoto Y; Takaoka M; Oshita K; Tanida H
    Chemosphere; 2009 Jul; 76(5):616-22. PubMed ID: 19467557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorption of dissolved lead from shooting range soils using hydroxyapatite amendments synthesized from industrial byproducts as affected by varying pH conditions.
    Hashimoto Y; Taki T; Sato T
    J Environ Manage; 2009 Apr; 90(5):1782-9. PubMed ID: 19111967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EXAFS speciation and phytoavailability of Pb in a contaminated soil amended with compost and gypsum.
    Hashimoto Y; Yamaguchi N; Takaoka M; Shiota K
    Sci Total Environ; 2011 Feb; 409(5):1001-7. PubMed ID: 21146856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils.
    Park JH; Bolan N; Megharaj M; Naidu R
    Sci Total Environ; 2011 Jan; 409(4):853-60. PubMed ID: 21130488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced transformation of lead speciation in rhizosphere soils using phosphorus amendments and phytostabilization: an x-ray absorption fine structure spectroscopy investigation.
    Hashimoto Y; Takaoka M; Shiota K
    J Environ Qual; 2011; 40(3):696-703. PubMed ID: 21546656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Field assessment of lead immobilization in a contaminated soil after phosphate application.
    Melamed R; Cao X; Chen M; Ma LQ
    Sci Total Environ; 2003 Apr; 305(1-3):117-27. PubMed ID: 12670762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extractability and leachability of Pb in a shooting range soil amended with poultry litter ash: investigations for immobilization potentials.
    Hashimoto Y; Taki T; Sato T
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 May; 44(6):583-90. PubMed ID: 19337921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application methods affect phosphorus-induced lead immobilization from a contaminated soil.
    Yoon JK; Cao X; Ma LQ
    J Environ Qual; 2007; 36(2):373-8. PubMed ID: 17255624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pb speciation versus TCLP release in army firing range soils.
    Dermatas D; Shen G; Chrysochoou M; Grubb DG; Menounou N; Dutko P
    J Hazard Mater; 2006 Aug; 136(1):34-46. PubMed ID: 16387429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential negative consequences of adding phosphorus-based fertilizers to immobilize lead in soil.
    Kilgour DW; Moseley RB; Barnett MO; Savage KS; Jardine PM
    J Environ Qual; 2008; 37(5):1733-40. PubMed ID: 18689734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of soil amendments on lead uptake by two vegetable crops from a lead-contaminated soil from Anhui, China.
    Zhu YG; Chen SB; Yang JC
    Environ Int; 2004 May; 30(3):351-6. PubMed ID: 14987865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilization of lead in a Korean military shooting range soil using eggshell waste: an integrated mechanistic approach.
    Ahmad M; Hashimoto Y; Moon DH; Lee SS; Ok YS
    J Hazard Mater; 2012 Mar; 209-210():392-401. PubMed ID: 22309654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of lead (Pb) in different soil conditions.
    Somasundaram J; Krishnasamy R; Mahimairaja S; Savithri P
    J Environ Sci Eng; 2006 Apr; 48(2):123-8. PubMed ID: 17913189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pilot study of temporal variations in lead bioaccessibility and chemical fractionation in some Chinese soils.
    Tang XY; Cui YS; Duan J; Tang L
    J Hazard Mater; 2008 Dec; 160(1):29-36. PubMed ID: 18395339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions.
    Cao X; Ma LQ; Singh SP; Zhou Q
    Environ Pollut; 2008 Mar; 152(1):184-92. PubMed ID: 17601642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosurfactant technology for remediation of cadmium and lead contaminated soils.
    Juwarkar AA; Nair A; Dubey KV; Singh SK; Devotta S
    Chemosphere; 2007 Aug; 68(10):1996-2002. PubMed ID: 17399765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lead transformation and distribution in the soils of shooting ranges in Florida, USA.
    Cao X; Ma LQ; Chen M; Hardison DW; Harris WG
    Sci Total Environ; 2003 May; 307(1-3):179-89. PubMed ID: 12711433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilization of lead in shooting range soils by means of cement, quicklime, and phosphate amendments.
    Cao X; Dermatas D; Xu X; Shen G
    Environ Sci Pollut Res Int; 2008 Mar; 15(2):120-7. PubMed ID: 18380230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.