BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 18752833)

  • 1. Behaviour and redox sensitivity of antimicrobial residues during bank filtration.
    Heberer T; Massmann G; Fanck B; Taute T; Dünnbier U
    Chemosphere; 2008 Sep; 73(4):451-60. PubMed ID: 18752833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behaviour and redox sensitivity of pharmaceutical residues during bank filtration - Investigation of residues of phenazone-type analgesics.
    Massmann G; Dünnbier U; Heberer T; Taute T
    Chemosphere; 2008 Apr; 71(8):1476-85. PubMed ID: 18279912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic micropollutant removal from wastewater effluent-impacted drinking water sources during bank filtration and artificial recharge.
    Maeng SK; Ameda E; Sharma SK; Grützmacher G; Amy GL
    Water Res; 2010 Jul; 44(14):4003-14. PubMed ID: 20542313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the fate of sulfonamides downgradient of a decommissioned sewage farm near Berlin, Germany.
    Richter D; Massmann G; Taute T; Duennbier U
    J Contam Hydrol; 2009 May; 106(3-4):183-94. PubMed ID: 19371963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long term laboratory column experiments to simulate bank filtration: factors controlling removal of sulfamethoxazole.
    Baumgarten B; Jährig J; Reemtsma T; Jekel M
    Water Res; 2011 Jan; 45(1):211-20. PubMed ID: 20828781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and significance of sulphonamides (p-TSA, o-TSA, BSA) in an urban water cycle (Berlin, Germany).
    Richter D; Massmann G; Dünnbier U
    Water Res; 2008 Mar; 42(6-7):1369-78. PubMed ID: 17961628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of bulk dissolved organic carbon (DOC) and trace organic compounds by bank filtration and artificial recharge.
    Grünheid S; Amy G; Jekel M
    Water Res; 2005 Sep; 39(14):3219-28. PubMed ID: 16024062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of aeration on the removal of wastewater-derived pharmaceutical residues from groundwater - a laboratory study.
    Burke V; Duennbier U; Massmann G
    Water Sci Technol; 2013; 67(3):658-66. PubMed ID: 23202573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From municipal sewage to drinking water: fate and removal of pharmaceutical residues in the aquatic environment in urban areas.
    Heberer T; Reddersen K; Mechlinski A
    Water Sci Technol; 2002; 46(3):81-8. PubMed ID: 12227607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the fate of organic micropollutants during river bank filtration (Berlin, Germany).
    Henzler AF; Greskowiak J; Massmann G
    J Contam Hydrol; 2014 Jan; 156():78-92. PubMed ID: 24270159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the behavior and metabolism of pharmaceutical residues during purification of contaminated ground water used for drinking water supply.
    Zuehlke S; Duennbier U; Heberer T
    Chemosphere; 2007 Nov; 69(11):1673-80. PubMed ID: 17662339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bank filtration: a suitable process for the removal of iodinated X-ray contrast media?
    Schittko S; Putschew A; Jekel M
    Water Sci Technol; 2004; 50(5):261-8. PubMed ID: 15497856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inorganic geochemistry and redox dynamics in bank filtration settings.
    Farnsworth CE; Hering JG
    Environ Sci Technol; 2011 Jun; 45(12):5079-87. PubMed ID: 21609010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Cyanobacterial toxins in bank filtrate. Under which conditions is their elimination reliable?].
    Grützmacher G; Bartel H; Chorus I
    Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz; 2007 Mar; 50(3):345-53. PubMed ID: 17334885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vulnerability of bank filtration systems to climate change.
    Sprenger C; Lorenzen G; Hülshoff I; Grützmacher G; Ronghang M; Pekdeger A
    Sci Total Environ; 2011 Jan; 409(4):655-63. PubMed ID: 21112614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence and fate of bulk organic matter and pharmaceutically active compounds in managed aquifer recharge: a review.
    Maeng SK; Sharma SK; Lekkerkerker-Teunissen K; Amy GL
    Water Res; 2011 May; 45(10):3015-33. PubMed ID: 21489592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of redox conditions and adaptation time on organic micropollutant removal during river bank filtration: A laboratory-scale column study.
    Bertelkamp C; Verliefde AR; Schoutteten K; Vanhaecke L; Vanden Bussche J; Singhal N; van der Hoek JP
    Sci Total Environ; 2016 Feb; 544():309-18. PubMed ID: 26657377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occurrence and distribution of psychoactive compounds and their metabolites in the urban water cycle of Berlin (Germany).
    Hass U; Duennbier U; Massmann G
    Water Res; 2012 Nov; 46(18):6013-22. PubMed ID: 22967903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of a home water filter in the reduction of trihalomethanes and total organic halogen in tap water: forty-one samples from Osaka City and surrounding cities of Japan in 1999, 2000, and 2004.
    Yamamoto K; Kakutani N; Yamamoto A; Tsuruho K; Mori Y
    Bull Environ Contam Toxicol; 2006 Sep; 77(3):323-30. PubMed ID: 17033857
    [No Abstract]   [Full Text] [Related]  

  • 20. Sulfamethoxazole contamination of a deep phreatic aquifer.
    Avisar D; Lester Y; Ronen D
    Sci Total Environ; 2009 Jul; 407(14):4278-82. PubMed ID: 19403159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.