These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
399 related articles for article (PubMed ID: 18753024)
1. Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Shi Z; Huang X; Cai Y; Tang R; Yang D Acta Biomater; 2009 Jan; 5(1):338-45. PubMed ID: 18753024 [TBL] [Abstract][Full Text] [Related]
2. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response. Balamurugan A; Rebelo AH; Lemos AF; Rocha JH; Ventura JM; Ferreira JM Dent Mater; 2008 Oct; 24(10):1374-80. PubMed ID: 18417203 [TBL] [Abstract][Full Text] [Related]
3. Protein expression profiles in osteoblasts in response to differentially shaped hydroxyapatite nanoparticles. Xu JL; Khor KA; Sui JJ; Zhang JH; Chen WN Biomaterials; 2009 Oct; 30(29):5385-91. PubMed ID: 19631375 [TBL] [Abstract][Full Text] [Related]
4. Nanoscale hydroxyapatite particles for bone tissue engineering. Zhou H; Lee J Acta Biomater; 2011 Jul; 7(7):2769-81. PubMed ID: 21440094 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of positively charged calcium hydroxyapatite nano-crystals and their adsorption behavior of proteins. Kandori K; Oda S; Fukusumi M; Morisada Y Colloids Surf B Biointerfaces; 2009 Oct; 73(1):140-5. PubMed ID: 19515538 [TBL] [Abstract][Full Text] [Related]
6. [Rat dental papilla cell culture with nanometer-HAP in vitro]. Fang CY; Cao Y; Xia Y; Zhang XM; Su Z; Li HL Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2007 Feb; 32(1):114-8. PubMed ID: 17344599 [TBL] [Abstract][Full Text] [Related]
7. Systematic study of osteoblast response to nanotopography by means of nanoparticle-density gradients. Kunzler TP; Huwiler C; Drobek T; Vörös J; Spencer ND Biomaterials; 2007 Nov; 28(33):5000-6. PubMed ID: 17720241 [TBL] [Abstract][Full Text] [Related]
8. Characterization and biocompatibility of nanohybrid scaffold prepared via in situ crystallization of hydroxyapatite in chitosan matrix. Chen J; Nan K; Yin S; Wang Y; Wu T; Zhang Q Colloids Surf B Biointerfaces; 2010 Dec; 81(2):640-7. PubMed ID: 20817419 [TBL] [Abstract][Full Text] [Related]
9. Effect of hydroxyapatite particle size, morphology and crystallinity on proliferation of colon cancer HCT116 cells. Dey S; Das M; Balla VK Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():336-9. PubMed ID: 24863233 [TBL] [Abstract][Full Text] [Related]
10. In situ fabrication of nano-hydroxyapatite in a macroporous chitosan scaffold for tissue engineering. Chen JD; Wang Y; Chen X J Biomater Sci Polym Ed; 2009; 20(11):1555-65. PubMed ID: 19619396 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Katti KS; Katti DR; Dash R Biomed Mater; 2008 Sep; 3(3):034122. PubMed ID: 18765898 [TBL] [Abstract][Full Text] [Related]
12. Effects of four types of hydroxyapatite nanoparticles with different nanocrystal morphologies and sizes on apoptosis in rat osteoblasts. Xu Z; Liu C; Wei J; Sun J J Appl Toxicol; 2012 Jun; 32(6):429-35. PubMed ID: 22162110 [TBL] [Abstract][Full Text] [Related]
13. Sonochemical preparation of hydroxyapatite nanoparticles stabilized by glycosaminoglycans. Han Y; Li S; Wang X; Bauer I; Yin M Ultrason Sonochem; 2007 Mar; 14(3):286-90. PubMed ID: 16904363 [TBL] [Abstract][Full Text] [Related]
14. Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles. Wutticharoenmongkol P; Pavasant P; Supaphol P Biomacromolecules; 2007 Aug; 8(8):2602-10. PubMed ID: 17655356 [TBL] [Abstract][Full Text] [Related]
15. In vitro evaluation of nanosized carbonate-substituted hydroxyapatite and its polyhydroxyethylmethacrylate nanocomposite. Huang J; Best SM; Brooks RA; Rushton N; Bonfield W J Biomed Mater Res A; 2008 Dec; 87(3):598-607. PubMed ID: 18186069 [TBL] [Abstract][Full Text] [Related]
16. In vitro study on influence of a discrete nano-hydroxyapatite on leukemia P388 cell behavior. Li G; Huang J; Li Y; Zhang R; Deng B; Zhang J; Aoki H Biomed Mater Eng; 2007; 17(5):321-7. PubMed ID: 17851174 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted with mixed hollow sphere template method. Gopi D; Indira J; Kavitha L; Sekar M; Mudali UK Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul; 93():131-4. PubMed ID: 22472129 [TBL] [Abstract][Full Text] [Related]
18. Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials. Rusu VM; Ng CH; Wilke M; Tiersch B; Fratzl P; Peter MG Biomaterials; 2005 Sep; 26(26):5414-26. PubMed ID: 15814140 [TBL] [Abstract][Full Text] [Related]
19. Effect of hydroxyapatite nanoparticles on the ultrastructure and function of hepatocellular carcinoma cells in vitro. Yin MZ; Han YC; Bauer IW; Chen P; Li SP Biomed Mater; 2006 Mar; 1(1):38-41. PubMed ID: 18458384 [TBL] [Abstract][Full Text] [Related]
20. [A novel nano-hydroxyapatite/aliphatic polyesteramide composite]. Deng X; Chen Z; Qian Z; Liu C; Li H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):378-81, 392. PubMed ID: 18610626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]