These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 18753282)
1. Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic Acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes. Argyris J; Dahal P; Hayashi E; Still DW; Bradford KJ Plant Physiol; 2008 Oct; 148(2):926-47. PubMed ID: 18753282 [TBL] [Abstract][Full Text] [Related]
2. A gene encoding an abscisic acid biosynthetic enzyme (LsNCED4) collocates with the high temperature germination locus Htg6.1 in lettuce (Lactuca sp.). Argyris J; Truco MJ; Ochoa O; McHale L; Dahal P; Van Deynze A; Michelmore RW; Bradford KJ Theor Appl Genet; 2011 Jan; 122(1):95-108. PubMed ID: 20703871 [TBL] [Abstract][Full Text] [Related]
3. A genetic locus and gene expression patterns associated with the priming effect on lettuce seed germination at elevated temperatures. Schwember AR; Bradford KJ Plant Mol Biol; 2010 May; 73(1-2):105-18. PubMed ID: 20047028 [TBL] [Abstract][Full Text] [Related]
4. Genetic Variation for Thermotolerance in Lettuce Seed Germination Is Associated with Temperature-Sensitive Regulation of ETHYLENE RESPONSE FACTOR1 (ERF1). Yoong FY; O'Brien LK; Truco MJ; Huo H; Sideman R; Hayes R; Michelmore RW; Bradford KJ Plant Physiol; 2016 Jan; 170(1):472-88. PubMed ID: 26574598 [TBL] [Abstract][Full Text] [Related]
5. Abscisic acid in the thermoinhibition of lettuce seed germination and enhancement of its catabolism by gibberellin. Gonai T; Kawahara S; Tougou M; Satoh S; Hashiba T; Hirai N; Kawaide H; Kamiya Y; Yoshioka T J Exp Bot; 2004 Jan; 55(394):111-8. PubMed ID: 14676289 [TBL] [Abstract][Full Text] [Related]
6. Expression of 9-cis-EPOXYCAROTENOID DIOXYGENASE4 is essential for thermoinhibition of lettuce seed germination but not for seed development or stress tolerance. Huo H; Dahal P; Kunusoth K; McCallum CM; Bradford KJ Plant Cell; 2013 Mar; 25(3):884-900. PubMed ID: 23503626 [TBL] [Abstract][Full Text] [Related]
7. Proteomic analysis of lettuce seed germination and thermoinhibition by sampling of individual seeds at germination and removal of storage proteins by polyethylene glycol fractionation. Wang WQ; Song BY; Deng ZJ; Wang Y; Liu SJ; Møller IM; Song SQ Plant Physiol; 2015 Apr; 167(4):1332-50. PubMed ID: 25736209 [TBL] [Abstract][Full Text] [Related]
8. Phytochrome- and gibberellin-mediated regulation of abscisic acid metabolism during germination of photoblastic lettuce seeds. Sawada Y; Aoki M; Nakaminami K; Mitsuhashi W; Tatematsu K; Kushiro T; Koshiba T; Kamiya Y; Inoue Y; Nambara E; Toyomasu T Plant Physiol; 2008 Mar; 146(3):1386-96. PubMed ID: 18184730 [TBL] [Abstract][Full Text] [Related]
9. Abscisic acid regulates seed germination of Vellozia species in response to temperature. Vieira BC; Bicalho EM; Munné-Bosch S; Garcia QS Plant Biol (Stuttg); 2017 Mar; 19(2):211-216. PubMed ID: 27718313 [TBL] [Abstract][Full Text] [Related]
10. Expression of genes associated with the biosynthetic pathways of abscisic acid, gibberellin, and ethylene during the germination of lettuce seeds. Clemente AC; Guimarães RM; Martins DC; Gomes LA; Caixeta F; Reis RG; Rosa SD Genet Mol Res; 2015 May; 14(2):4703-15. PubMed ID: 25966245 [TBL] [Abstract][Full Text] [Related]
11. Re-localization of hormone effectors is associated with dormancy alleviation by temperature and after-ripening in sunflower seeds. Xia Q; Ponnaiah M; Thanikathansubramanian K; Corbineau F; Bailly C; Nambara E; Meimoun P; El-Maarouf-Bouteau H Sci Rep; 2019 Mar; 9(1):4861. PubMed ID: 30890715 [TBL] [Abstract][Full Text] [Related]
12. Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. Seo M; Hanada A; Kuwahara A; Endo A; Okamoto M; Yamauchi Y; North H; Marion-Poll A; Sun TP; Koshiba T; Kamiya Y; Yamaguchi S; Nambara E Plant J; 2006 Nov; 48(3):354-66. PubMed ID: 17010113 [TBL] [Abstract][Full Text] [Related]
13. Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds. Ye N; Zhu G; Liu Y; Zhang A; Li Y; Liu R; Shi L; Jia L; Zhang J J Exp Bot; 2012 Mar; 63(5):1809-22. PubMed ID: 22200664 [TBL] [Abstract][Full Text] [Related]
14. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Toh S; Imamura A; Watanabe A; Nakabayashi K; Okamoto M; Jikumaru Y; Hanada A; Aso Y; Ishiyama K; Tamura N; Iuchi S; Kobayashi M; Yamaguchi S; Kamiya Y; Nambara E; Kawakami N Plant Physiol; 2008 Mar; 146(3):1368-85. PubMed ID: 18162586 [TBL] [Abstract][Full Text] [Related]
15. Germination of photoblastic lettuce seeds is regulated via the control of endogenous physiologically active gibberellin content, rather than of gibberellin responsiveness. Sawada Y; Katsumata T; Kitamura J; Kawaide H; Nakajima M; Asami T; Nakaminami K; Kurahashi T; Mitsuhashi W; Inoue Y; Toyomasu T J Exp Bot; 2008; 59(12):3383-93. PubMed ID: 18653696 [TBL] [Abstract][Full Text] [Related]
16. Modulation in the ratio of abscisic acid to gibberellin level determines genetic variation of seed dormancy in barley (Hordeum vulgare L.). Toora PK; Tuan PA; Nguyen TN; Badea A; Ayele BT J Plant Physiol; 2024 Oct; 301():154301. PubMed ID: 38968782 [TBL] [Abstract][Full Text] [Related]
17. Spatiotemporal modulation of abscisic acid and gibberellin metabolism and signalling mediates the effects of suboptimal and supraoptimal temperatures on seed germination in wheat (Triticum aestivum L.). Izydorczyk C; Nguyen TN; Jo S; Son S; Tuan PA; Ayele BT Plant Cell Environ; 2018 May; 41(5):1022-1037. PubMed ID: 28349595 [TBL] [Abstract][Full Text] [Related]
18. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions. Meng Y; Chen F; Shuai H; Luo X; Ding J; Tang S; Xu S; Liu J; Liu W; Du J; Liu J; Yang F; Sun X; Yong T; Wang X; Feng Y; Shu K; Yang W Sci Rep; 2016 Feb; 6():22073. PubMed ID: 26902640 [TBL] [Abstract][Full Text] [Related]
19. Molecular and physiological dissection of enhanced seed germination using short-term low-concentration salt seed priming in tomato. Nakaune M; Hanada A; Yin YG; Matsukura C; Yamaguchi S; Ezura H Plant Physiol Biochem; 2012 Mar; 52():28-37. PubMed ID: 22305065 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of FUSCA3 degradation at high temperature is dependent on ABA signaling and is regulated by the ABA/GA ratio. Chiu RS; Saleh Y; Gazzarrini S Plant Signal Behav; 2016 Nov; 11(11):e1247137. PubMed ID: 27791466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]