These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 18753386)
1. A role for TASK-1 (KCNK3) channels in the chemosensory control of breathing. Trapp S; Aller MI; Wisden W; Gourine AV J Neurosci; 2008 Aug; 28(35):8844-50. PubMed ID: 18753386 [TBL] [Abstract][Full Text] [Related]
2. Abnormal respiration under hyperoxia in TASK-1/3 potassium channel double knockout mice. Buehler PK; Bleiler D; Tegtmeier I; Heitzmann D; Both C; Georgieff M; Lesage F; Warth R; Thomas J Respir Physiol Neurobiol; 2017 Oct; 244():17-25. PubMed ID: 28673876 [TBL] [Abstract][Full Text] [Related]
3. Respiratory responses to hypercapnia and hypoxia in mice with genetic ablation of Kir5.1 (Kcnj16). Trapp S; Tucker SJ; Gourine AV Exp Physiol; 2011 Apr; 96(4):451-9. PubMed ID: 21239463 [TBL] [Abstract][Full Text] [Related]
4. Peripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO2 : role of carotid body CO2. Smith CA; Blain GM; Henderson KS; Dempsey JA J Physiol; 2015 Sep; 593(18):4225-43. PubMed ID: 26171601 [TBL] [Abstract][Full Text] [Related]
5. Ventilatory pattern and chemosensitivity in M1 and M3 muscarinic receptor knockout mice. Boudinot E; Yamada M; Wess J; Champagnat J; Foutz AS Respir Physiol Neurobiol; 2004 Feb; 139(3):237-45. PubMed ID: 15122990 [TBL] [Abstract][Full Text] [Related]
6. Sex-dependent differences in the in vivo respiratory phenotype of the TASK-1 potassium channel knockout mouse. Jungbauer S; Buehler PK; Neubauer J; Haas C; Heitzmann D; Tegtmeier I; Sterner C; Barhanin J; Georgieff M; Warth R; Thomas J Respir Physiol Neurobiol; 2017 Nov; 245():13-28. PubMed ID: 27838333 [TBL] [Abstract][Full Text] [Related]
7. TASK channels determine pH sensitivity in select respiratory neurons but do not contribute to central respiratory chemosensitivity. Mulkey DK; Talley EM; Stornetta RL; Siegel AR; West GH; Chen X; Sen N; Mistry AM; Guyenet PG; Bayliss DA J Neurosci; 2007 Dec; 27(51):14049-58. PubMed ID: 18094244 [TBL] [Abstract][Full Text] [Related]
8. Role of the carotid bodies in chemosensory ventilatory responses in the anesthetized mouse. Izumizaki M; Pokorski M; Homma I J Appl Physiol (1985); 2004 Oct; 97(4):1401-7. PubMed ID: 15194670 [TBL] [Abstract][Full Text] [Related]
9. Oxygen and mitochondrial inhibitors modulate both monomeric and heteromeric TASK-1 and TASK-3 channels in mouse carotid body type-1 cells. Turner PJ; Buckler KJ J Physiol; 2013 Dec; 591(23):5977-98. PubMed ID: 24042502 [TBL] [Abstract][Full Text] [Related]
10. Task2 potassium channels set central respiratory CO2 and O2 sensitivity. Gestreau C; Heitzmann D; Thomas J; Dubreuil V; Bandulik S; Reichold M; Bendahhou S; Pierson P; Sterner C; Peyronnet-Roux J; Benfriha C; Tegtmeier I; Ehnes H; Georgieff M; Lesage F; Brunet JF; Goridis C; Warth R; Barhanin J Proc Natl Acad Sci U S A; 2010 Feb; 107(5):2325-30. PubMed ID: 20133877 [TBL] [Abstract][Full Text] [Related]
11. Carotid body chemosensory responses in mice deficient of TASK channels. Ortega-Sáenz P; Levitsky KL; Marcos-Almaraz MT; Bonilla-Henao V; Pascual A; López-Barneo J J Gen Physiol; 2010 Apr; 135(4):379-92. PubMed ID: 20351062 [TBL] [Abstract][Full Text] [Related]
12. Role of cystathionine-γ-lyase in hypoxia-induced changes in TASK activity, intracellular [Ca Wang J; Hogan JO; Wang R; White C; Kim D Respir Physiol Neurobiol; 2017 Dec; 246():98-106. PubMed ID: 28851593 [TBL] [Abstract][Full Text] [Related]
13. Functional role of carbon dioxide on intermittent hypoxia induced respiratory response following mid-cervical contusion in the rat. Lin MT; Vinit S; Lee KZ Exp Neurol; 2021 May; 339():113610. PubMed ID: 33453216 [TBL] [Abstract][Full Text] [Related]
14. Acute Effects of Systemic Erythropoietin Injections on Carotid Body Chemosensory Activity Following Hypoxic and Hypercapnic Stimulation. Andrade DC; Iturriaga R; Jeton F; Alcayaga J; Voituron N; Del Rio R Adv Exp Med Biol; 2018; 1071():95-102. PubMed ID: 30357739 [TBL] [Abstract][Full Text] [Related]
15. Dynamic ventilatory responses to CO2 in the awake lamb: role of the carotid chemoreceptors. Carroll JL; Canet E; Bureau MA J Appl Physiol (1985); 1991 Dec; 71(6):2198-205. PubMed ID: 1778913 [TBL] [Abstract][Full Text] [Related]
16. TASK-1 (KCNK3) and TASK-3 (KCNK9) tandem pore potassium channel antagonists stimulate breathing in isoflurane-anesthetized rats. Cotten JF Anesth Analg; 2013 Apr; 116(4):810-6. PubMed ID: 23460565 [TBL] [Abstract][Full Text] [Related]
18. Ventilatory responses to acute and chronic hypoxia are altered in female but not male Paskin-deficient mice. Soliz J; Soulage C; Borter E; van Patot MT; Gassmann M Am J Physiol Regul Integr Comp Physiol; 2008 Aug; 295(2):R649-58. PubMed ID: 18509100 [TBL] [Abstract][Full Text] [Related]
19. Role of acid-sensing ion channels in hypoxia- and hypercapnia-induced ventilatory responses. Detweiler ND; Vigil KG; Resta TC; Walker BR; Jernigan NL PLoS One; 2018; 13(2):e0192724. PubMed ID: 29474404 [TBL] [Abstract][Full Text] [Related]
20. Leptin acts in the carotid bodies to increase minute ventilation during wakefulness and sleep and augment the hypoxic ventilatory response. Caballero-Eraso C; Shin MK; Pho H; Kim LJ; Pichard LE; Wu ZJ; Gu C; Berger S; Pham L; Yeung HB; Shirahata M; Schwartz AR; Tang WW; Sham JSK; Polotsky VY J Physiol; 2019 Jan; 597(1):151-172. PubMed ID: 30285278 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]