These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 18753387)

  • 1. GABAergic circuits control input-spike coupling in the piriform cortex.
    Luna VM; Schoppa NE
    J Neurosci; 2008 Aug; 28(35):8851-9. PubMed ID: 18753387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blanes cells mediate persistent feedforward inhibition onto granule cells in the olfactory bulb.
    Pressler RT; Strowbridge BW
    Neuron; 2006 Mar; 49(6):889-904. PubMed ID: 16543136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional and molecular development of striatal fast-spiking GABAergic interneurons and their cortical inputs.
    Plotkin JL; Wu N; Chesselet MF; Levine MS
    Eur J Neurosci; 2005 Sep; 22(5):1097-108. PubMed ID: 16176351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Odor representations in olfactory cortex: "sparse" coding, global inhibition, and oscillations.
    Poo C; Isaacson JS
    Neuron; 2009 Jun; 62(6):850-61. PubMed ID: 19555653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong single-fiber sensory inputs to olfactory cortex: implications for olfactory coding.
    Franks KM; Isaacson JS
    Neuron; 2006 Feb; 49(3):357-63. PubMed ID: 16446140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the NMDA component of EPSPs by different components of postsynaptic GABAergic inhibition: computer simulation analysis in piriform cortex.
    Kapur A; Lytton WW; Ketchum KL; Haberly LB
    J Neurophysiol; 1997 Nov; 78(5):2546-59. PubMed ID: 9356404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limbic gamma rhythms. II. Synaptic and intrinsic mechanisms underlying spike doublets in oscillating subicular neurons.
    Stanford IM; Traub RD; Jefferys JG
    J Neurophysiol; 1998 Jul; 80(1):162-71. PubMed ID: 9658038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchronization of olfactory bulb mitral cells by precisely timed inhibitory inputs.
    Schoppa NE
    Neuron; 2006 Jan; 49(2):271-83. PubMed ID: 16423700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 5-Hydroxytryptamine action in the rat olfactory bulb: in vitro electrophysiological patch-clamp recordings of juxtaglomerular and mitral cells.
    Hardy A; Palouzier-Paulignan B; Duchamp A; Royet JP; Duchamp-Viret P
    Neuroscience; 2005; 131(3):717-31. PubMed ID: 15730876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adrenergic receptor-mediated disinhibition of mitral cells triggers long-term enhancement of synchronized oscillations in the olfactory bulb.
    Pandipati S; Gire DH; Schoppa NE
    J Neurophysiol; 2010 Aug; 104(2):665-74. PubMed ID: 20538781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suprachiasmatic nucleus communicates with anterior thalamic paraventricular nucleus neurons via rapid glutamatergic and gabaergic neurotransmission: state-dependent response patterns observed in vitro.
    Zhang L; Kolaj M; Renaud LP
    Neuroscience; 2006 Sep; 141(4):2059-66. PubMed ID: 16797851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric rostro-caudal inhibition in the primary olfactory cortex.
    Luna VM; Pettit DL
    Nat Neurosci; 2010 May; 13(5):533-5. PubMed ID: 20348915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of GABAergic inhibition alters subthreshold input in neurons in forepaw barrel subfield (FBS) in rat first somatosensory cortex (SI) after digit stimulation.
    Li CX; Callaway JC; Waters RS
    Exp Brain Res; 2002 Aug; 145(4):411-28. PubMed ID: 12172653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic and cellular properties of the feedforward inhibitory circuit within the input layer of the cerebellar cortex.
    Kanichay RT; Silver RA
    J Neurosci; 2008 Sep; 28(36):8955-67. PubMed ID: 18768689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State-dependent bidirectional modification of somatic inhibition in neocortical pyramidal cells.
    Kurotani T; Yamada K; Yoshimura Y; Crair MC; Komatsu Y
    Neuron; 2008 Mar; 57(6):905-16. PubMed ID: 18367091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Matching of feedback inhibition with excitation ensures fidelity of information flow in the anterior piriform cortex.
    Sheridan DC; Hughes AR; Erdélyi F; Szabó G; Hentges ST; Schoppa NE
    Neuroscience; 2014 Sep; 275():519-30. PubMed ID: 24969131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two GABAergic intraglomerular circuits differentially regulate tonic and phasic presynaptic inhibition of olfactory nerve terminals.
    Shao Z; Puche AC; Kiyokage E; Szabo G; Shipley MT
    J Neurophysiol; 2009 Apr; 101(4):1988-2001. PubMed ID: 19225171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GABAB Receptors Tune Cortical Feedback to the Olfactory Bulb.
    Mazo C; Lepousez G; Nissant A; Valley MT; Lledo PM
    J Neurosci; 2016 Aug; 36(32):8289-304. PubMed ID: 27511004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nigral GABAergic inhibition upon mesencephalic dopaminergic cell groups in rats.
    Saitoh K; Isa T; Takakusaki K
    Eur J Neurosci; 2004 May; 19(9):2399-409. PubMed ID: 15128394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous field potentials in the glomeruli of the olfactory bulb: the leading role of juxtaglomerular cells.
    Karnup SV; Hayar A; Shipley MT; Kurnikova MG
    Neuroscience; 2006 Sep; 142(1):203-21. PubMed ID: 16876327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.