These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 18754366)

  • 1. Laboratory measurements of the heterogeneous oxidation of condensed-phase organic molecular makers for meat cooking emissions.
    Weitkamp EA; Hartz KE; Sage AM; Donahue NM; Robinson AL
    Environ Sci Technol; 2008 Jul; 42(14):5177-82. PubMed ID: 18754366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laboratory measurements of the heterogeneous oxidation of condensed-phase organic molecular makers for motor vehicle exhaust.
    Weitkamp EA; Lambe AT; Donahue NM; Robinson AL
    Environ Sci Technol; 2008 Nov; 42(21):7950-6. PubMed ID: 19031886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volatility of organic molecular markers used for source apportionment analysis: measurements and implications for atmospheric lifetime.
    May AA; Saleh R; Hennigan CJ; Donahue NM; Robinson AL
    Environ Sci Technol; 2012 Nov; 46(22):12435-44. PubMed ID: 23013599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical speciation, including polycyclic aromatic hydrocarbons (PAHs), and toxicity of particles emitted from meat cooking operations.
    Gysel N; Dixit P; Schmitz DA; Engling G; Cho AK; Cocker DR; Karavalakis G
    Sci Total Environ; 2018 Aug; 633():1429-1436. PubMed ID: 29758895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photo-oxidation of low-volatility organics found in motor vehicle emissions: production and chemical evolution of organic aerosol mass.
    Miracolo MA; Presto AA; Lambe AT; Hennigan CJ; Donahue NM; Kroll JH; Worsnop DR; Robinson AL
    Environ Sci Technol; 2010 Mar; 44(5):1638-43. PubMed ID: 20121083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Source apportionment of PM2.5 in the Southeastern United States using solvent-extractable organic compounds as tracers.
    Zheng M; Cass GR; Schauer JJ; Edgerton ES
    Environ Sci Technol; 2002 Jun; 36(11):2361-71. PubMed ID: 12075791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerosol products, mechanisms, and kinetics of heterogeneous reactions of ozone with oleic acid in pure and mixed particles.
    Ziemann PJ
    Faraday Discuss; 2005; 130():469-90; discussion 491-517, 519-24. PubMed ID: 16161799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Source reconciliation of atmospheric gas-phase and particle-phase pollutants during a severe photochemical smog episode.
    Schauer JJ; Fraser MP; Cass GR; Simoneit BR
    Environ Sci Technol; 2002 Sep; 36(17):3806-14. PubMed ID: 12322754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring rates of reaction in supercooled organic particles with implications for atmospheric aerosol.
    Hearn JD; Smith GD
    Phys Chem Chem Phys; 2005 Jul; 7(13):2549-51. PubMed ID: 16189562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct photolysis of α-pinene ozonolysis secondary organic aerosol: effect on particle mass and peroxide content.
    Epstein SA; Blair SL; Nizkorodov SA
    Environ Sci Technol; 2014 Oct; 48(19):11251-8. PubMed ID: 25165890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Source apportionment of molecular markers and organic aerosol. 3. Food cooking emissions.
    Robinson AL; Subramanian R; Donahue NM; Bernardo-Bricker A; Rogge WF
    Environ Sci Technol; 2006 Dec; 40(24):7820-7. PubMed ID: 17256533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secondary organic aerosol formation from in-use motor vehicle emissions using a potential aerosol mass reactor.
    Tkacik DS; Lambe AT; Jathar S; Li X; Presto AA; Zhao Y; Blake D; Meinardi S; Jayne JT; Croteau PL; Robinson AL
    Environ Sci Technol; 2014 Oct; 48(19):11235-42. PubMed ID: 25188317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Estimate of the formation potential of secondary organic aerosol in Beijing summertime].
    Lü ZF; Hao JM; Duan JC; Li JH
    Huan Jing Ke Xue; 2009 Apr; 30(4):969-75. PubMed ID: 19544991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactivity of oleic acid in organic particles: changes in oxidant uptake and reaction stoichiometry with particle oxidation.
    Sage AM; Weitkamp EA; Robinson AL; Donahue NM
    Phys Chem Chem Phys; 2009 Sep; 11(36):7951-62. PubMed ID: 19727502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organic aerosol formation from photochemical oxidation of diesel exhaust in a smog chamber.
    Weitkamp EA; Sage AM; Pierce JR; Donahue NM; Robinson AL
    Environ Sci Technol; 2007 Oct; 41(20):6969-75. PubMed ID: 17993136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the formation of secondary organic aerosol (SOA). 2. The predicted effects of relative humidity on aerosol formation in the alpha-pinene-, beta-pinene-, sabinene-, delta 3-carene-, and cyclohexene-ozone systems.
    Seinfeld JH; Erdakos GB; Asher WE; Pankow JF
    Environ Sci Technol; 2001 May; 35(9):1806-17. PubMed ID: 11355196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Online Chemical Characterization of Food-Cooking Organic Aerosols: Implications for Source Apportionment.
    Reyes-Villegas E; Bannan T; Le Breton M; Mehra A; Priestley M; Percival C; Coe H; Allan JD
    Environ Sci Technol; 2018 May; 52(9):5308-5318. PubMed ID: 29619820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the sources of primary organic aerosols at urban schools: a molecular marker approach.
    Crilley LR; Qadir RM; Ayoko GA; Schnelle-Kreis J; Abbaszade G; Orasche J; Zimmermann R; Morawska L
    Environ Pollut; 2014 Aug; 191():158-65. PubMed ID: 24842381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake and reaction of atmospheric organic vapours on organic films.
    Donaldson DJ; Mmereki BT; Chaudhuri SR; Handley S; Oh M
    Faraday Discuss; 2005; 130():227-39; discussion 241-64, 519-24. PubMed ID: 16161787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the evolution of summertime secondary atmospheric pollutants in urban Beijing.
    Ji D; Gao W; Zhang J; Morino Y; Zhou L; Yu P; Li Y; Sun J; Ge B; Tang G; Sun Y; Wang Y
    Sci Total Environ; 2016 Dec; 572():289-300. PubMed ID: 27505262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.