These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 18754451)
1. Assessing the concentrations of polar organic microcontaminants from point sources in the aquatic environment: measure or model? Johnson AC; Ternes T; Williams RJ; Sumpter JP Environ Sci Technol; 2008 Aug; 42(15):5390-9. PubMed ID: 18754451 [TBL] [Abstract][Full Text] [Related]
2. Analytical and chemometric characterization of the Cruces River in South Chile. Schaefer K; Einax JW Environ Sci Pollut Res Int; 2010 Jan; 17(1):115-23. PubMed ID: 19280239 [TBL] [Abstract][Full Text] [Related]
3. Occurrence of estrogenic effects in sewage and industrial wastewaters in Beijing, China. Ma M; Rao K; Wang Z Environ Pollut; 2007 May; 147(2):331-6. PubMed ID: 16872730 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of a novel high throughput screening tool for relative emissions of industrial chemicals used in chemical products. Undeman E; Fischer S; McLachlan MS Chemosphere; 2011 Feb; 82(7):996-1001. PubMed ID: 21074823 [TBL] [Abstract][Full Text] [Related]
5. Toxicology and ecotoxicology of persistent organic microcontaminants in aquatic systems. Miniero R; Dellatte E; Di Domenico A Ann Ist Super Sanita; 2002; 38(2):131-5. PubMed ID: 12387135 [TBL] [Abstract][Full Text] [Related]
6. Emission factor estimation of ca. 160 emerging organic microcontaminants by inverse modeling in a Mediterranean river basin (Llobregat, NE Spain). Banjac Z; Ginebreda A; Kuzmanovic M; Marcé R; Nadal M; Riera JM; Barceló D Sci Total Environ; 2015 Jul; 520():241-52. PubMed ID: 25817761 [TBL] [Abstract][Full Text] [Related]
7. Determination of the androgenic potency of whole effluents using mosquitofish and trout bioassays. Bandelj E; van den Heuvel MR; Leusch FD; Shannon N; Taylor S; McCarthy LH Aquat Toxicol; 2006 Dec; 80(3):237-48. PubMed ID: 16996625 [TBL] [Abstract][Full Text] [Related]
8. A long-term, multitrophic level study to assess pulp and paper mill effluent effects on aquatic communities in four US receiving waters: characteristics of the study streams, sample sites, mills, and mill effluents. Hall TJ; Ragsdale RL; Arthurs WJ; Ikoma J; Borton DL; Cook DL Integr Environ Assess Manag; 2009 Apr; 5(2):199-218. PubMed ID: 19063588 [TBL] [Abstract][Full Text] [Related]
9. QUAL2K model used in the water quality assessment of Qiantang River, China. Fang X; Zhang J; Chen Y; Xu X Water Environ Res; 2008 Nov; 80(11):2125-33. PubMed ID: 19024728 [TBL] [Abstract][Full Text] [Related]
10. Influence of the organic compounds on the ecotoxicity in the treatment of foundry sludge and olive mill waste. Coz A; Mantzavinos D; Karageorgos P; Kalogerakis N; Andrés A; Viguri JR; Irabien A Ann Chim; 2006; 96(9-10):505-14. PubMed ID: 17172203 [TBL] [Abstract][Full Text] [Related]
11. A long-term, multitrophic level study to assess pulp and paper mill effluent effects on aquatic communities in four US receiving waters: lessons learned. Hall TJ; Fisher RP; Rodgers JH; Minshall GW; Landis WG; Kovacs T; Firth BK; Dubé MG; Flinders CA; Deardorff TL; Borton DL Integr Environ Assess Manag; 2009 Apr; 5(2):283-90. PubMed ID: 19115805 [TBL] [Abstract][Full Text] [Related]
12. A practical demonstration in modelling diclofenac and propranolol river water concentrations using a GIS hydrology model in a rural UK catchment. Johnson AC; Keller V; Williams RJ; Young A Environ Pollut; 2007 Mar; 146(1):155-65. PubMed ID: 16905225 [TBL] [Abstract][Full Text] [Related]
13. A risk-based methodology for deriving quality standards for organic contaminants in sewage sludge for use in agriculture--Conceptual Framework. Schowanek D; Carr R; David H; Douben P; Hall J; Kirchmann H; Patria L; Sequi P; Smith S; Webb S Regul Toxicol Pharmacol; 2004 Dec; 40(3):227-51. PubMed ID: 15546678 [TBL] [Abstract][Full Text] [Related]
14. A state-wide survey in Oregon (USA) of trace metals and organic chemicals in municipal effluent. Hope BK; Pillsbury L; Boling B Sci Total Environ; 2012 Feb; 417-418():263-72. PubMed ID: 22244355 [TBL] [Abstract][Full Text] [Related]
15. Targeting aquatic microcontaminants for monitoring: exposure categorization and application to the Swiss situation. Götz CW; Stamm C; Fenner K; Singer H; Schärer M; Hollender J Environ Sci Pollut Res Int; 2010 Feb; 17(2):341-54. PubMed ID: 19475441 [TBL] [Abstract][Full Text] [Related]
16. Aqueous stability of gadolinium in surface waters receiving sewage treatment plant effluent, Boulder Creek, Colorado. Verplanck PL; Taylor HE; Nordstrom DK; Barber LB Environ Sci Technol; 2005 Sep; 39(18):6923-9. PubMed ID: 16201612 [TBL] [Abstract][Full Text] [Related]
17. A spatial and seasonal assessment of river water chemistry across North West England. Rothwell JJ; Dise NB; Taylor KG; Allott TE; Scholefield P; Davies H; Neal C Sci Total Environ; 2010 Jan; 408(4):841-55. PubMed ID: 19926113 [TBL] [Abstract][Full Text] [Related]
18. Laboratory calibration and field deployment of the polar organic chemical integrative sampler for pharmaceuticals and personal care products in wastewater and surface water. MacLeod SL; McClure EL; Wong CS Environ Toxicol Chem; 2007 Dec; 26(12):2517-29. PubMed ID: 18020693 [TBL] [Abstract][Full Text] [Related]
19. Linking toxicity in algal and bacterial assays with chemical analysis in passive samplers deployed in 21 treated sewage effluents. Vermeirssen EL; Hollender J; Bramaz N; van der Voet J; Escher BI Environ Toxicol Chem; 2010 Nov; 29(11):2575-82. PubMed ID: 20853455 [TBL] [Abstract][Full Text] [Related]
20. Analysis of emerging contaminants in sewage effluent and river water: comparison between spot and passive sampling. Zhang Z; Hibberd A; Zhou JL Anal Chim Acta; 2008 Jan; 607(1):37-44. PubMed ID: 18155407 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]