BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 18754510)

  • 1. The global potential of bioenergy on abandoned agriculture lands.
    Campbell JE; Lobell DB; Genova RC; Field CB
    Environ Sci Technol; 2008 Aug; 42(15):5791-4. PubMed ID: 18754510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growing energy on unused agricultural land.
    Engelhaupt E
    Environ Sci Technol; 2008 Aug; 42(15):5380. PubMed ID: 18754447
    [No Abstract]   [Full Text] [Related]  

  • 3. Recent Land Use Change to Agriculture in the U.S. Lake States: Impacts on Cellulosic Biomass Potential and Natural Lands.
    Mladenoff DJ; Sahajpal R; Johnson CP; Rothstein DE
    PLoS One; 2016; 11(2):e0148566. PubMed ID: 26866474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Landscape patterns of bioenergy in a changing climate: implications for crop allocation and land-use competition.
    Graves RA; Pearson SM; Turner MG
    Ecol Appl; 2016 Mar; 26(2):515-29. PubMed ID: 27209792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A long-term forecast analysis on worldwide land uses.
    Zhang W; Qi Y; Zhang Z
    Environ Monit Assess; 2006 Aug; 119(1-3):609-20. PubMed ID: 16741808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Historical U.S. cropland areas and the potential for bioenergy production on abandoned croplands.
    Zumkehr A; Campbell JE
    Environ Sci Technol; 2013 Apr; 47(8):3840-7. PubMed ID: 23506118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Land use strategies to mitigate climate change in carbon dense temperate forests.
    Law BE; Hudiburg TW; Berner LT; Kent JJ; Buotte PC; Harmon ME
    Proc Natl Acad Sci U S A; 2018 Apr; 115(14):3663-3668. PubMed ID: 29555758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative scenarios of bioenergy crop production in an agricultural landscape and implications for bird communities.
    Blank PJ; Williams CL; Sample DW; Meehan TD; Turner MG
    Ecol Appl; 2016 Jan; 26(1):42-54. PubMed ID: 27039508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global human appropriation of net primary production doubled in the 20th century.
    Krausmann F; Erb KH; Gingrich S; Haberl H; Bondeau A; Gaube V; Lauk C; Plutzar C; Searchinger TD
    Proc Natl Acad Sci U S A; 2013 Jun; 110(25):10324-9. PubMed ID: 23733940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomass energy: the scale of the potential resource.
    Field CB; Campbell JE; Lobell DB
    Trends Ecol Evol; 2008 Feb; 23(2):65-72. PubMed ID: 18215439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decadal Trend in Agricultural Abandonment and Woodland Expansion in an Agro-Pastoral Transition Band in Northern China.
    Wang C; Gao Q; Wang X; Yu M
    PLoS One; 2015; 10(11):e0142113. PubMed ID: 26562303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A World at Risk: Aggregating Development Trends to Forecast Global Habitat Conversion.
    Oakleaf JR; Kennedy CM; Baruch-Mordo S; West PC; Gerber JS; Jarvis L; Kiesecker J
    PLoS One; 2015; 10(10):e0138334. PubMed ID: 26445282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Projected water consumption in future global agriculture: scenarios and related impacts.
    Pfister S; Bayer P; Koehler A; Hellweg S
    Sci Total Environ; 2011 Sep; 409(20):4206-16. PubMed ID: 21840571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tropical forest cover change in the 1990s and options for future monitoring.
    Mayaux P; Holmgren P; Achard F; Eva H; Stibig HJ; Branthomme A
    Philos Trans R Soc Lond B Biol Sci; 2005 Feb; 360(1454):373-84. PubMed ID: 15814351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of bioenergy on biodiversity arising from land-use change and crop type.
    Núñez-Regueiro MM; Siddiqui SF; Fletcher RJ
    Conserv Biol; 2021 Feb; 35(1):77-87. PubMed ID: 31854480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agricultural sustainability and intensive production practices.
    Tilman D; Cassman KG; Matson PA; Naylor R; Polasky S
    Nature; 2002 Aug; 418(6898):671-7. PubMed ID: 12167873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marginal land-based biomass energy production in China.
    Tang Y; Xie JS; Geng S
    J Integr Plant Biol; 2010 Jan; 52(1):112-21. PubMed ID: 20074145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Food supply and bioenergy production within the global cropland planetary boundary.
    Henry RC; Engström K; Olin S; Alexander P; Arneth A; Rounsevell MDA
    PLoS One; 2018; 13(3):e0194695. PubMed ID: 29566091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Will Passive Protection Save Congo Forests?
    Galford GL; Soares-Filho BS; Sonter LJ; Laporte N
    PLoS One; 2015; 10(6):e0128473. PubMed ID: 26106897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trade-offs for food production, nature conservation and climate limit the terrestrial carbon dioxide removal potential.
    Boysen LR; Lucht W; Gerten D
    Glob Chang Biol; 2017 Oct; 23(10):4303-4317. PubMed ID: 28464416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.