BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 18754631)

  • 1. Hydration water and bulk water in proteins have distinct properties in radial distributions calculated from 105 atomic resolution crystal structures.
    Chen X; Weber I; Harrison RW
    J Phys Chem B; 2008 Sep; 112(38):12073-80. PubMed ID: 18754631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape dependence of the radial distribution function of hydration water around proteins.
    Rani P; Biswas P
    J Phys Condens Matter; 2014 Aug; 26(33):335102. PubMed ID: 25053697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of hydration water in proteins: a comparison of molecular dynamics simulations and database analysis.
    Bhattacharjee N; Biswas P
    Biophys Chem; 2011 Sep; 158(1):73-80. PubMed ID: 21665349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the hydration layer around proteins: HyPred.
    Virtanen JJ; Makowski L; Sosnick TR; Freed KF
    Biophys J; 2010 Sep; 99(5):1611-9. PubMed ID: 20816074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydration of krypton and consideration of clathrate models of hydrophobic effects from the perspective of quasi-chemical theory.
    Ashbaugh HS; Asthagiri D; Pratt LR; Rempe SB
    Biophys Chem; 2003 Sep; 105(2-3):323-38. PubMed ID: 14499902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale networks of hydration water molecules around bovine beta-trypsin revealed by cryogenic X-ray crystal structure analysis.
    Nakasako M
    J Mol Biol; 1999 Jun; 289(3):547-64. PubMed ID: 10356328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of hydrophilic and hydrophobic hydration structure of protein by neural network optimized using experimental data.
    Sato K; Oide M; Nakasako M
    Sci Rep; 2023 Feb; 13(1):2183. PubMed ID: 36750742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and dynamics of the hydration shells of the Zn(2+) ion from ab initio molecular dynamics and combined ab initio and classical molecular dynamics simulations.
    Cauët E; Bogatko S; Weare JH; Fulton JL; Schenter GK; Bylaska EJ
    J Chem Phys; 2010 May; 132(19):194502. PubMed ID: 20499974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decomposition of protein experimental compressibility into intrinsic and hydration shell contributions.
    Dadarlat VM; Post CB
    Biophys J; 2006 Dec; 91(12):4544-54. PubMed ID: 16997864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water-protein interactions from high-resolution protein crystallography.
    Nakasako M
    Philos Trans R Soc Lond B Biol Sci; 2004 Aug; 359(1448):1191-204; discussion 1204-6. PubMed ID: 15306376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of hydration structures around hydrophilic surfaces of proteins by using the empirical hydration distribution functions from a database analysis.
    Matsuoka D; Nakasako M
    J Phys Chem B; 2010 Apr; 114(13):4652-63. PubMed ID: 20201497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein Solvent Shell Structure Provides Rapid Analysis of Hydration Dynamics.
    Dahanayake JN; Shahryari E; Roberts KM; Heikes ME; Kasireddy C; Mitchell-Koch KR
    J Chem Inf Model; 2019 May; 59(5):2407-2422. PubMed ID: 30865440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of protein surface hydration shell free energy of water motion: theoretical study and molecular dynamics simulation.
    Sheu SY; Yang DY
    J Phys Chem B; 2010 Dec; 114(49):16558-66. PubMed ID: 21090707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hydration of globular proteins as derived from volume and compressibility measurements: cross correlating thermodynamic and structural data.
    Chalikian TV; Totrov M; Abagyan R; Breslauer KJ
    J Mol Biol; 1996 Jul; 260(4):588-603. PubMed ID: 8759322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anisotropic waters in atomic resolution protein crystal structures.
    Carugo O
    Int J Biol Macromol; 2019 Aug; 135():940-944. PubMed ID: 31170487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale networks of hydration water molecules around proteins investigated by cryogenic X-ray crystallography.
    Nakasako M
    Cell Mol Biol (Noisy-le-grand); 2001 Jul; 47(5):767-90. PubMed ID: 11728092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probability distributions of hydration water molecules around polar protein atoms obtained by a database analysis.
    Matsuoka D; Nakasako M
    J Phys Chem B; 2009 Aug; 113(32):11274-92. PubMed ID: 19621908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-Binding Generates the Semi-Clathrate Waters on a Type II Antifreeze Protein to Adsorb onto an Ice Crystal Surface.
    Arai T; Nishimiya Y; Ohyama Y; Kondo H; Tsuda S
    Biomolecules; 2019 Apr; 9(5):. PubMed ID: 31035615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. When proteins are completely hydrated in crystals.
    Carugo O
    Int J Biol Macromol; 2016 Aug; 89():137-43. PubMed ID: 27112977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the ordered hydration of amino acids in proteins: analysis of crystal structures.
    Biedermannová L; Schneider B
    Acta Crystallogr D Biol Crystallogr; 2015 Nov; 71(Pt 11):2192-202. PubMed ID: 26527137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.