These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 18754799)

  • 1. Intelligent Space Tube Optimization for speeding ground water remedial design.
    Kalwij IM; Peralta RC
    Ground Water; 2008; 46(6):829-40. PubMed ID: 18754799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cost-effective sampling network design for contaminant plume monitoring under general hydrogeological conditions.
    Wu J; Zheng C; Chien CC
    J Contam Hydrol; 2005 Mar; 77(1-2):41-65. PubMed ID: 15722172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing remediation of an unconfined aquifer using a hybrid algorithm.
    Hsiao CT; Chang LC
    Ground Water; 2005; 43(6):904-15. PubMed ID: 16324011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An assembly model for simulation of large-scale ground water flow and transport.
    Huang J; Christ JA; Goltz MN
    Ground Water; 2008; 46(6):882-92. PubMed ID: 18715260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncertainty based optimal monitoring network design for a chlorinated hydrocarbon contaminated site.
    Chadalavada S; Datta B; Naidu R
    Environ Monit Assess; 2011 Feb; 173(1-4):929-40. PubMed ID: 20390346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing long-term remedial costs by transport modeling optimization.
    Becker D; Minsker B; Greenwald R; Zhang Y; Harre K; Yager K; Zheng C; Peralta R
    Ground Water; 2006; 44(6):864-75. PubMed ID: 17087758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational benefits using artificial intelligent methodologies for the solution of an environmental design problem: saltwater intrusion.
    Papadopoulou MP; Nikolos IK; Karatzas GP
    Water Sci Technol; 2010; 62(7):1479-90. PubMed ID: 20935364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of simulation model solver performance on ground water management problems.
    Ahlfeld DP; Hoque Y
    Ground Water; 2008; 46(5):716-26. PubMed ID: 18522654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An impatient evolutionary algorithm with probabilistic tabu search for unified solution of some NP-hard problems in graph and set theory via clique finding.
    Guturu P; Dantu R
    IEEE Trans Syst Man Cybern B Cybern; 2008 Jun; 38(3):645-66. PubMed ID: 18558530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal reconstruction of historical water supply to a distribution system: A. Methodology.
    Aral MM; Guan J; Maslia ML; Sautner JB; Gillig RE; Reyes JJ; Williams RC
    J Water Health; 2004 Sep; 2(3):123-36. PubMed ID: 15497810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review on integration of artificial intelligence into water quality modelling.
    Chau KW
    Mar Pollut Bull; 2006 Jul; 52(7):726-33. PubMed ID: 16764895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation/optimization modeling for robust pumping strategy design.
    Kalwij IM; Peralta RC
    Ground Water; 2006; 44(4):574-82. PubMed ID: 16857035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stochastic optimization model under modeling uncertainty and parameter certainty for groundwater remediation design--part I. Model development.
    He L; Huang GH; Lu HW
    J Hazard Mater; 2010 Apr; 176(1-3):521-6. PubMed ID: 20006432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Support vector machines (SVMs) for monitoring network design.
    Asefa T; Kemblowski M; Urroz G; McKee M
    Ground Water; 2005; 43(3):413-22. PubMed ID: 15882333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal design of an in-situ bioremediation system using support vector machine and particle swarm optimization.
    ch S; Kumar D; Prasad RK; Mathur S
    J Contam Hydrol; 2013 Aug; 151():105-16. PubMed ID: 23771102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ground water sustainability: methodology and application to the North China Plain.
    Liu J; Zheng C; Zheng L; Lei Y
    Ground Water; 2008; 46(6):897-909. PubMed ID: 18754798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remediation of heterogeneous aquifers subject to uncertainty.
    Ricciardi KL
    Ground Water; 2009; 47(5):675-85. PubMed ID: 19473275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hybrid artificial neural network-numerical model for ground water problems.
    Szidarovszky F; Coppola EA; Long J; Hall AD; Poulton MM
    Ground Water; 2007; 45(5):590-600. PubMed ID: 17760585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methodology for comparing source and plume remediation alternatives.
    Falta RW
    Ground Water; 2008; 46(2):272-85. PubMed ID: 18266737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A real-time, interactive steering environment for integrated ground water modeling.
    Li SG; Liu Q
    Ground Water; 2006; 44(5):758-63. PubMed ID: 16961499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.