BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 18755075)

  • 1. NCAM as a cystogenesis marker gene of PKD2 overexpression.
    Yoo KH; Lee TY; Yang MH; Park EY; Yook YJ; Lee HS; Park JH
    BMB Rep; 2008 Aug; 41(8):593-6. PubMed ID: 18755075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-myc downstream-regulated gene 1 is involved in the regulation of cystogenesis in transgenic mice overexpressing human PKD2 gene.
    Kim BH; Park EY; Yoo KH; Choi KM; Kim Y; Seong Jk; Park JH
    Proteomics; 2013 Jan; 13(1):134-41. PubMed ID: 23212942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel microarray profiling identifies ErbB4 as a determinant of cyst growth in ADPKD and a prognostic biomarker for disease progression.
    Streets AJ; Magayr TA; Huang L; Vergoz L; Rossetti S; Simms RJ; Harris PC; Peters DJ; Ong AC
    Am J Physiol Renal Physiol; 2017 Apr; 312(4):F577-F588. PubMed ID: 28077374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TAZ/Wnt-β-catenin/c-MYC axis regulates cystogenesis in polycystic kidney disease.
    Lee EJ; Seo E; Kim JW; Nam SA; Lee JY; Jun J; Oh S; Park M; Jho EH; Yoo KH; Park JH; Kim YK
    Proc Natl Acad Sci U S A; 2020 Nov; 117(46):29001-29012. PubMed ID: 33122431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of PKD1 causes polycystic kidney disease.
    Thivierge C; Kurbegovic A; Couillard M; Guillaume R; Coté O; Trudel M
    Mol Cell Biol; 2006 Feb; 26(4):1538-48. PubMed ID: 16449663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. c-Myc is a regulator of the PKD1 gene and PC1-induced pathogenesis.
    Parrot C; Kurbegovic A; Yao G; Couillard M; Côté O; Trudel M
    Hum Mol Genet; 2019 Mar; 28(5):751-763. PubMed ID: 30388220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small hairpin inhibitory RNA delivery in the metanephric organ culture identifies long noncoding RNA
    Eckberg K; Weisser I; Buttram D; Somia N; Igarashi P; Aboudehen KS
    Am J Physiol Renal Physiol; 2022 Sep; 323(3):F335-F348. PubMed ID: 35862648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapamycin treatment dose-dependently improves the cystic kidney in a new ADPKD mouse model via the mTORC1 and cell-cycle-associated CDK1/cyclin axis.
    Li A; Fan S; Xu Y; Meng J; Shen X; Mao J; Zhang L; Zhang X; Moeckel G; Wu D; Wu G; Liang C
    J Cell Mol Med; 2017 Aug; 21(8):1619-1635. PubMed ID: 28244683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Mutational analysis of the PKD1 and PKD2 (type 1 and 2 dominant autosomal polycystic kidney) genes].
    Torra R; Badenas C; Pérez-Oller L; San Millán JL; Tellería D; Estivill X; Darnell A
    Nefrologia; 2000; 20(1):39-46. PubMed ID: 10822721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide methylation profiling of ADPKD identified epigenetically regulated genes associated with renal cyst development.
    Woo YM; Bae JB; Oh YH; Lee YG; Lee MJ; Park EY; Choi JK; Lee S; Shin Y; Lyu J; Jung HY; Lee YS; Hwang YH; Kim YJ; Park JH
    Hum Genet; 2014 Mar; 133(3):281-97. PubMed ID: 24129831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel PKD1 and PKD2 mutations in autosomal dominant polycystic kidney disease (ADPKD).
    Hoefele J; Mayer K; Scholz M; Klein HG
    Nephrol Dial Transplant; 2011 Jul; 26(7):2181-8. PubMed ID: 21115670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. cDNA cloning of porcine PKD2 gene and RNA interference in LLC-PK1 cells.
    Wang Q; Yin H; He J; Ye J; Ding F; Wang S; Hu X; Meng Q; Li N
    Gene; 2011 May; 476(1-2):38-45. PubMed ID: 21277361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyst formation in kidney via B-Raf signaling in the PKD2 transgenic mice.
    Park EY; Sung YH; Yang MH; Noh JY; Park SY; Lee TY; Yook YJ; Yoo KH; Roh KJ; Kim I; Hwang YH; Oh GT; Seong JK; Ahn C; Lee HW; Park JH
    J Biol Chem; 2009 Mar; 284(11):7214-22. PubMed ID: 19098310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of ADPKD-Related Genes and Pathways in Cells Overexpressing
    Zhang Z; Dang Y; Wang Z; Wang H; Pan Y; He J
    Genes (Basel); 2020 Jan; 11(2):. PubMed ID: 31979107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Somatic PKD2 mutations in individual kidney and liver cysts support a "two-hit" model of cystogenesis in type 2 autosomal dominant polycystic kidney disease.
    Pei Y; Watnick T; He N; Wang K; Liang Y; Parfrey P; Germino G; St George-Hyslop P
    J Am Soc Nephrol; 1999 Jul; 10(7):1524-9. PubMed ID: 10405208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autosomal dominant polycystic kidney disease: clues to pathogenesis.
    Harris PC
    Hum Mol Genet; 1999; 8(10):1861-6. PubMed ID: 10469838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PKD1 mono-allelic knockout is sufficient to trigger renal cystogenesis in a mini-pig model.
    He J; Li Q; Fang S; Guo Y; Liu T; Ye J; Yu Z; Zhang R; Zhao Y; Hu X; Bai X; Chen X; Li N
    Int J Biol Sci; 2015; 11(4):361-9. PubMed ID: 25798056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutation analysis of autosomal dominant polycystic kidney disease genes in Han Chinese.
    Zhang S; Mei C; Zhang D; Dai B; Tang B; Sun T; Zhao H; Zhou Y; Li L; Wu Y; Wang W; Shen X; Song J
    Nephron Exp Nephrol; 2005; 100(2):e63-76. PubMed ID: 15775720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PKD1 and PKD2 mutations in Slovenian families with autosomal dominant polycystic kidney disease.
    Vouk K; Strmecki L; Stekrova J; Reiterova J; Bidovec M; Hudler P; Kenig A; Jereb S; Zupanic-Pajnic I; Balazic J; Haarpaintner G; Leskovar B; Adamlje A; Skoflic A; Dovc R; Hojs R; Komel R
    BMC Med Genet; 2006 Jan; 7():6. PubMed ID: 16430766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Type identification of autosomal dominant polycystic kidney disease by analysis of fluorescent short tandem repeat markers.
    Lin WD; Wu JY; Tsai FJ; Gau MT; Lee CC
    J Formos Med Assoc; 2002 Aug; 101(8):567-71. PubMed ID: 12440087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.