These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 18755463)

  • 21. Multifidus EMG and tension-relaxation recovery after prolonged static lumbar flexion.
    Jackson M; Solomonow M; Zhou B; Baratta RV; Harris M
    Spine (Phila Pa 1976); 2001 Apr; 26(7):715-23. PubMed ID: 11295887
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neuromuscular manifestations of viscoelastic tissue degradation following high and low risk repetitive lumbar flexion.
    Solomonow M
    J Electromyogr Kinesiol; 2012 Apr; 22(2):155-75. PubMed ID: 22154465
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Motor control of lumbar instability following exposure to various cyclic load magnitudes.
    Ben-Masaud A; Solomonow D; Davidson B; Zhou BH; Lu Y; Patel V; Solomonow M
    Eur Spine J; 2009 Jul; 18(7):1022-34. PubMed ID: 19367420
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomechanics of increased exposure to lumbar injury caused by cyclic loading. Part 2. Recovery of reflexive muscular stability with rest.
    Gedalia U; Solomonow M; Zhou BH; Baratta RV; Lu Y; Harris M
    Spine (Phila Pa 1976); 1999 Dec; 24(23):2461-7. PubMed ID: 10626308
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multifidus spasms elicited by prolonged lumbar flexion.
    Williams M; Solomonow M; Zhou BH; Baratta RV; Harris M
    Spine (Phila Pa 1976); 2000 Nov; 25(22):2916-24. PubMed ID: 11074680
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomechanics of increased exposure to lumbar injury caused by cyclic loading: Part 1. Loss of reflexive muscular stabilization.
    Solomonow M; Zhou BH; Baratta RV; Lu Y; Harris M
    Spine (Phila Pa 1976); 1999 Dec; 24(23):2426-34. PubMed ID: 10626304
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Creep and fatigue development in the low back in static flexion.
    Shin G; D'Souza C; Liu YH
    Spine (Phila Pa 1976); 2009 Aug; 34(17):1873-8. PubMed ID: 19644340
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The intrinsic stiffness of the in vivo lumbar spine in response to quick releases: implications for reflexive requirements.
    Brown SH; McGill SM
    J Electromyogr Kinesiol; 2009 Oct; 19(5):727-36. PubMed ID: 18513993
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flexion-relaxation response to gravity.
    Olson M; Solomonow M; Li L
    J Biomech; 2006; 39(14):2545-54. PubMed ID: 16256121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Longer static flexion duration elicits a neuromuscular disorder in the lumbar spine.
    LaBry R; Sbriccoli P; Zhou BH; Solomonow M
    J Appl Physiol (1985); 2004 May; 96(5):2005-15. PubMed ID: 14742451
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acute repetitive lumbar syndrome: a multi-component insight into the disorder.
    Solomonow M; Zhou BH; Lu Y; King KB
    J Bodyw Mov Ther; 2012 Apr; 16(2):134-47. PubMed ID: 22464112
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High magnitude cyclic load triggers inflammatory response in lumbar ligaments.
    King K; Davidson B; Zhou BH; Lu Y; Solomonow M
    Clin Biomech (Bristol, Avon); 2009 Dec; 24(10):792-8. PubMed ID: 19703727
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neuromuscular neutral zones sensitivity to lumbar displacement rate.
    Elizabeth Eversull BS; Solomonow M; Bing He Zhou EE; Baratta RV; Zhu MP
    Clin Biomech (Bristol, Avon); 2001 Feb; 16(2):102-13. PubMed ID: 11222928
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sensory-motor control of ligaments and associated neuromuscular disorders.
    Solomonow M
    J Electromyogr Kinesiol; 2006 Dec; 16(6):549-67. PubMed ID: 17045488
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Muscular dysfunction elicited by creep of lumbar viscoelastic tissue.
    Solomonow M; Baratta RV; Zhou BH; Burger E; Zieske A; Gedalia A
    J Electromyogr Kinesiol; 2003 Aug; 13(4):381-96. PubMed ID: 12832168
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transfer of loads between lumbar tissues during the flexion-relaxation phenomenon.
    McGill SM; Kippers V
    Spine (Phila Pa 1976); 1994 Oct; 19(19):2190-6. PubMed ID: 7809753
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in the flexion relaxation response induced by lumbar muscle fatigue.
    Descarreaux M; Lafond D; Jeffrey-Gauthier R; Centomo H; Cantin V
    BMC Musculoskelet Disord; 2008 Jan; 9():10. PubMed ID: 18218087
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulation of the flexion-relaxation response by spinal manipulative therapy: a control group study.
    Lalanne K; Lafond D; Descarreaux M
    J Manipulative Physiol Ther; 2009; 32(3):203-9. PubMed ID: 19362230
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of trunk muscle co-contraction on spinal curvature during sitting reclining against the backrest of a chair.
    Watanabe S; Eguchi A; Kobara K; Ishida H
    Electromyogr Clin Neurophysiol; 2008; 48(8):359-65. PubMed ID: 19097476
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The viscoelastic standard nonlinear solid model: predicting the response of the lumbar intervertebral disk to low-frequency vibrations.
    Groth KM; Granata KP
    J Biomech Eng; 2008 Jun; 130(3):031005. PubMed ID: 18532854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.