These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 18755590)

  • 1. A simple method for calibrating force plates and force treadmills using an instrumented pole.
    Collins SH; Adamczyk PG; Ferris DP; Kuo AD
    Gait Posture; 2009 Jan; 29(1):59-64. PubMed ID: 18755590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-situ force plate calibration: 12 years' experience with an approach for correcting the point of force application.
    List R; Hitz M; Angst M; Taylor WR; Lorenzetti S
    Gait Posture; 2017 Oct; 58():98-102. PubMed ID: 28763716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ calibration and motion capture transformation optimization improve instrumented treadmill measurements.
    Goldberg SR; Kepple TM; Stanhope SJ
    J Appl Biomech; 2009 Nov; 25(4):401-6. PubMed ID: 20095462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calibration of measured center of pressure of a new stairway design for kinetic analysis of stair climbing.
    Yu B; Growney ES; Schultz FM; An KN
    J Biomech; 1996 Dec; 29(12):1625-8. PubMed ID: 8945662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive protocol to test instrumented treadmills.
    Sloot LH; Houdijk H; Harlaar J
    Med Eng Phys; 2015 Jun; 37(6):610-6. PubMed ID: 25921721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force measurements during running on different instrumented treadmills.
    Asmussen MJ; Kaltenbach C; Hashlamoun K; Shen H; Federico S; Nigg BM
    J Biomech; 2019 Feb; 84():263-268. PubMed ID: 30621957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal calibration of instrumented treadmills using an instrumented pole.
    Sloot LH; Houdijk H; van der Krogt MM; Harlaar J
    Med Eng Phys; 2016 Aug; 38(8):785-92. PubMed ID: 27180211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic assessment of center of pressure measurements from an instrumented AMTI treadmill with controlled precision.
    Fortune E; Crenshaw J; Lugade V; Kaufman KR
    Med Eng Phys; 2017 Apr; 42():99-104. PubMed ID: 28161106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of centre of pressure behaviour and ground reaction force magnitudes when individuals walk overground and on an instrumented treadmill.
    Hutchinson LA; De Asha AR; Rainbow MJ; Dickinson AWL; Deluzio KJ
    Gait Posture; 2021 Jan; 83():174-176. PubMed ID: 33152613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and validation of a novel Cartesian biomechanical testing system with coordinated 6DOF real-time load control: application to the lumbar spine (L1-S, L4-L5).
    Kelly BP; Bennett CR
    J Biomech; 2013 Jul; 46(11):1948-54. PubMed ID: 23764173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A force transducer to measure individual finger loads during activities of daily living.
    Fowler NK; Nicol AC
    J Biomech; 1999 Jul; 32(7):721-5. PubMed ID: 10400360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibration of an instrumented treadmill using a precision-controlled device with artificial neural network-based error corrections.
    Hsieh HJ; Lin HC; Lu HL; Chen TY; Lu TW
    Gait Posture; 2016 Mar; 45():217-23. PubMed ID: 26979909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of motion platform embedded with dual belt treadmill instrumented with two force plates.
    Sinitski EH; Lemaire ED; Baddour N
    J Rehabil Res Dev; 2015; 52(2):221-34. PubMed ID: 26230116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and testing of a high-speed treadmill to measure ground reaction forces at the limit of human gait.
    Bundle MW; Powell MO; Ryan LJ
    Med Eng Phys; 2015 Sep; 37(9):892-7. PubMed ID: 26143150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IceSense Proof of Concept: Calibrating an Instrumented Figure Skating Blade to Measure On-Ice Forces.
    Ridge S; Bruening D; Charles S; Stahl C; Smith D; Reynolds R; Adamo B; Harper B; Adair C; Manwaring P; King D
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33321886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and calibration of a pedal with force and moment sensors.
    Gurgel J; Porto F; Russomano T; Cambraia R; de Azevedo DF; Glock FS; Beck JC; Helegda S
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4144-6. PubMed ID: 17946605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Periodical in-situ re-calibration of force platforms: a new method for the robust estimation of the calibration matrix.
    Cappello A; Lenzi D; Chiari L
    Med Biol Eng Comput; 2004 May; 42(3):350-5. PubMed ID: 15191081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concurrent prediction of ground reaction forces and moments and tibiofemoral contact forces during walking using musculoskeletal modelling.
    Peng Y; Zhang Z; Gao Y; Chen Z; Xin H; Zhang Q; Fan X; Jin Z
    Med Eng Phys; 2018 Feb; 52():31-40. PubMed ID: 29269224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carrying loads with springy poles.
    Kram R
    J Appl Physiol (1985); 1991 Sep; 71(3):1119-22. PubMed ID: 1757307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Perturbed Postural Balance Test Using an Instrumented Treadmill - Precision and Accuracy of Belt Movement and Test-Retest Reliability of Balance Measures.
    Lesch KJ; Lavikainen J; Hyrylä V; Vartiainen P; Venojärvi M; Karjalainen PA; Tikkanen H; Stenroth L
    Front Sports Act Living; 2021; 3():688993. PubMed ID: 34514383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.