These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 18755672)

  • 21. Coral gardens: paternity and drug testing on the reef.
    Palumbi SR
    Curr Biol; 2005 Jul; 15(14):R544-5. PubMed ID: 16051159
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contrasting hydrodynamic regimes of submerged pinnacle and emergent coral reefs.
    Galbraith GF; Cresswell BJ; McCormick MI; Bridge TC; Jones GP
    PLoS One; 2022; 17(8):e0273092. PubMed ID: 35972945
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coral larvae are poor swimmers and require fine-scale reef structure to settle.
    Hata T; Madin JS; Cumbo VR; Denny M; Figueiredo J; Harii S; Thomas CJ; Baird AH
    Sci Rep; 2017 May; 7(1):2249. PubMed ID: 28533550
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Homeward sound.
    Simpson SD; Meekan M; Montgomery J; McCauley R; Jeffs A
    Science; 2005 Apr; 308(5719):221. PubMed ID: 15821083
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Larval traits carry over to affect post-settlement behaviour in a common coral reef fish.
    Dingeldein AL; White JW
    J Anim Ecol; 2016 Jul; 85(4):903-14. PubMed ID: 26913461
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Habitat degradation is threatening reef replenishment by making fish fearless.
    Lönnstedt OM; McCormick MI; Chivers DP; Ferrari MC
    J Anim Ecol; 2014 Sep; 83(5):1178-85. PubMed ID: 24498854
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coward or braveheart: extreme habitat fidelity through hypoxia tolerance in a coral-dwelling goby.
    Nilsson GE; Hobbs JP; Munday PL; Ostlund-Nilsson S
    J Exp Biol; 2004 Jan; 207(Pt 1):33-9. PubMed ID: 14638830
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recruiting a long way from home: Domino damselfish Dascyllus trimaculatus can detect new temperate coral habitat and conspecifics.
    O'Connell MJ; Fowler AM; Allan SJ; Beretta GA; Booth DJ
    J Fish Biol; 2022 Jun; 100(6):1548-1552. PubMed ID: 35439333
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ability to home in small site-attached coral reef fishes.
    Booth DJ
    J Fish Biol; 2016 Aug; 89(2):1501-6. PubMed ID: 27324974
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Host choice and fitness of anemonefish Amphiprion ocellaris (Perciformes: Pomacentridae) living with host anemones (Anthozoa: Actiniaria) in captive conditions.
    Nguyen HT; Tran AT; Ha LTL; Ngo DN; Dang BT; Geffen AJ
    J Fish Biol; 2019 Jun; 94(6):937-947. PubMed ID: 30676646
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ENCORE: the effect of nutrient enrichment on coral reefs. Synthesis of results and conclusions.
    Koop K; Booth D; Broadbent A; Brodie J; Bucher D; Capone D; Coll J; Dennison W; Erdmann M; Harrison P; Hoegh-Guldberg O; Hutchings P; Jones GB; Larkum AW; O'Neil J; Steven A; Tentori E; Ward S; Williamson J; Yellowlees D
    Mar Pollut Bull; 2001 Feb; 42(2):91-120. PubMed ID: 11381890
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The mangrove nursery paradigm revisited: otolith stable isotopes support nursery-to-reef movements by Indo-Pacific fishes.
    Kimirei IA; Nagelkerken I; Mgaya YD; Huijbers CM
    PLoS One; 2013; 8(6):e66320. PubMed ID: 23776658
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues.
    Dixson DL; Munday PL; Jones GP
    Ecol Lett; 2010 Jan; 13(1):68-75. PubMed ID: 19917053
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A test of the senses: fish select novel habitats by responding to multiple cues.
    Huijbers CM; Nagelkerken I; Lössbroek PA; Schulten IE; Siegenthaler A; Holderied MW; Simpson SD
    Ecology; 2012 Jan; 93(1):46-55. PubMed ID: 22486086
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Habitat choice, recruitment and the response of coral reef fishes to coral degradation.
    Feary DA; Almany GR; McCormick MI; Jones GP
    Oecologia; 2007 Sep; 153(3):727-37. PubMed ID: 17566781
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The dynamics of architectural complexity on coral reefs under climate change.
    Bozec YM; Alvarez-Filip L; Mumby PJ
    Glob Chang Biol; 2015 Jan; 21(1):223-35. PubMed ID: 25099220
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impacts of coastal land use change in the wet tropics on nearshore coral reefs: Case studies from Papua New Guinea.
    Turak E; DeVantier L; Szava-Kovats R; Brodie J
    Mar Pollut Bull; 2021 Jul; 168():112445. PubMed ID: 33991988
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Metamorphosis of marine fish larvae and thyroid hormones].
    Roux N; Salis P; Laudet V
    Biol Aujourdhui; 2019; 213(1-2):27-33. PubMed ID: 31274100
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Experimental study on the sensory capabilities of coral-reef fish larvae for the recognition of their settlement location].
    Lecchini D
    C R Biol; 2004 Feb; 327(2):159-71. PubMed ID: 15060987
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A population genetic assessment of coral recovery on highly disturbed reefs of the Keppel Island archipelago in the southern Great Barrier Reef.
    van Oppen MJ; Lukoschek V; Berkelmans R; Peplow LM; Jones AM
    PeerJ; 2015; 3():e1092. PubMed ID: 26244109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.