These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 18755743)

  • 1. Depletion of calcium stores regulates calcium influx and signal transmission in rod photoreceptors.
    Szikra T; Cusato K; Thoreson WB; Barabas P; Bartoletti TM; Krizaj D
    J Physiol; 2008 Oct; 586(20):4859-75. PubMed ID: 18755743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Store-operated channels regulate intracellular calcium in mammalian rods.
    Molnar T; Barabas P; Birnbaumer L; Punzo C; Kefalov V; Križaj D
    J Physiol; 2012 Aug; 590(15):3465-81. PubMed ID: 22674725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium homeostasis and cone signaling are regulated by interactions between calcium stores and plasma membrane ion channels.
    Szikra T; Barabas P; Bartoletti TM; Huang W; Akopian A; Thoreson WB; Krizaj D
    PLoS One; 2009 Aug; 4(8):e6723. PubMed ID: 19696927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic transmission mediated by internal calcium stores in rod photoreceptors.
    Suryanarayanan A; Slaughter MM
    J Neurosci; 2006 Feb; 26(6):1759-66. PubMed ID: 16467524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RIM1/2-Mediated Facilitation of Cav1.4 Channel Opening Is Required for Ca2+-Stimulated Release in Mouse Rod Photoreceptors.
    Grabner CP; Gandini MA; Rehak R; Le Y; Zamponi GW; Schmitz F
    J Neurosci; 2015 Sep; 35(38):13133-47. PubMed ID: 26400943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pre- and post-synaptic effects of manipulating surface charge with divalent cations at the photoreceptor synapse.
    Cadetti L; Thoreson WB; Piccolino M
    Neuroscience; 2004; 129(3):791-801. PubMed ID: 15541900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dynamic range and domain-specific signals of intracellular calcium in photoreceptors.
    Szikra T; Krizaj D
    Neuroscience; 2006 Aug; 141(1):143-55. PubMed ID: 16682126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium-dependent inactivation and depletion of synaptic cleft calcium ions combine to regulate rod calcium currents under physiological conditions.
    Rabl K; Thoreson WB
    Eur J Neurosci; 2002 Dec; 16(11):2070-7. PubMed ID: 12473074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms, pools, and sites of spontaneous vesicle release at synapses of rod and cone photoreceptors.
    Cork KM; Van Hook MJ; Thoreson WB
    Eur J Neurosci; 2016 Aug; 44(3):2015-27. PubMed ID: 27255664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca2+ Diffusion through Endoplasmic Reticulum Supports Elevated Intraterminal Ca2+ Levels Needed to Sustain Synaptic Release from Rods in Darkness.
    Chen M; Van Hook MJ; Thoreson WB
    J Neurosci; 2015 Aug; 35(32):11364-73. PubMed ID: 26269643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caffeine-sensitive calcium stores regulate synaptic transmission from retinal rod photoreceptors.
    Krizaj D; Bao JX; Schmitz Y; Witkovsky P; Copenhagen DR
    J Neurosci; 1999 Sep; 19(17):7249-61. PubMed ID: 10460231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-induced calcium release in rod photoreceptor terminals boosts synaptic transmission during maintained depolarization.
    Cadetti L; Bryson EJ; Ciccone CA; Rabl K; Thoreson WB
    Eur J Neurosci; 2006 Jun; 23(11):2983-90. PubMed ID: 16819987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses.
    Johnson JE; Perkins GA; Giddabasappa A; Chaney S; Xiao W; White AD; Brown JM; Waggoner J; Ellisman MH; Fox DA
    Mol Vis; 2007 Jun; 13():887-919. PubMed ID: 17653034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adenosine inhibits voltage-dependent Ca2+ influx in cone photoreceptor terminals of the tiger salamander retina.
    Stella SL; Hu WD; Vila A; Brecha NC
    J Neurosci Res; 2007 Apr; 85(5):1126-37. PubMed ID: 17304584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of ribbon and non-ribbon release from rod photoreceptors revealed by visualizing individual synaptic vesicles.
    Chen M; Van Hook MJ; Zenisek D; Thoreson WB
    J Neurosci; 2013 Jan; 33(5):2071-86. PubMed ID: 23365244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion channel compartments in photoreceptors: evidence from salamander rods with intact and ablated terminals.
    MacLeish PR; Nurse CA
    J Neurophysiol; 2007 Jul; 98(1):86-95. PubMed ID: 17460105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of calcium homeostasis in the outer segments of rod and cone photoreceptors.
    Vinberg F; Chen J; Kefalov VJ
    Prog Retin Eye Res; 2018 Nov; 67():87-101. PubMed ID: 29883715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging of Ca2+ dynamics within the presynaptic terminals of salamander rod photoreceptors.
    Steele EC; Chen X; Iuvone PM; MacLeish PR
    J Neurophysiol; 2005 Dec; 94(6):4544-53. PubMed ID: 16107525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. STIM-TRP Pathways and Microdomain Organization: Contribution of TRPC1 in Store-Operated Ca
    Ong HL; Ambudkar IS
    Adv Exp Med Biol; 2017; 993():159-188. PubMed ID: 28900914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. T-Type Ca
    Davison A; Lux UT; Brandstätter JH; Babai N
    J Neurosci; 2022 Aug; 42(33):6325-6343. PubMed ID: 35803735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.