BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 18755851)

  • 1. Involvement of intestinal uptake transporters in the absorption of azithromycin and clarithromycin in the rat.
    Garver E; Hugger ED; Shearn SP; Rao A; Dawson PA; Davis CB; Han C
    Drug Metab Dispos; 2008 Dec; 36(12):2492-8. PubMed ID: 18755851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of Olmesartan to Olmesartan Medoxomil, A Prodrug that Improves Intestinal Absorption, Confers Substrate Recognition by OATP2B1.
    Fukazawa N; Nishimura T; Orii K; Noguchi S; Tomi M
    Pharm Res; 2024 May; 41(5):849-861. PubMed ID: 38485855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effects of Jabara Juice on the Intestinal Permeation of Fexofenadine.
    Han H; Akiyoshi T; Morita T; Tsuchitani T; Nabeta M; Yajima K; Imaoka A; Ohtani H
    Biol Pharm Bull; 2023; 46(12):1745-1752. PubMed ID: 38044133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Matrix-assisted laser desorption/ionization mass spectrometry-guided visualization analysis of intestinal absorption of acylated anthocyanins in Sprague-Dawley rats.
    Hahm TH; Tanaka M; Nguyen HN; Tsutsumi A; Aizawa K; Matsui T
    Food Chem; 2021 Jan; 334():127586. PubMed ID: 32707364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term and per rectum disposition of Clarithromycin in the desert tortoise (Gopherus agassizii).
    Wimsatt J; Tothill A; Offermann CF; Sheehy JG; Peloquin CA
    J Am Assoc Lab Anim Sci; 2008 Jul; 47(4):41-5. PubMed ID: 18702450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis and occurrence of macrolide residues in stream sediments and underlying alluvial aquifer downstream from a pharmaceutical plant.
    Senta I; Terzic S; Ahel M
    Environ Pollut; 2021 Jan; 273():116433. PubMed ID: 33486242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of P-glycoprotein-mediated efflux of digoxin and its metabolites by macrolide antibiotics.
    Hughes J; Crowe A
    J Pharmacol Sci; 2010; 113(4):315-24. PubMed ID: 20724802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pharmacokinetics of azithromycin in human serum and tissues.
    Foulds G; Shepard RM; Johnson RB
    J Antimicrob Chemother; 1990 Jan; 25 Suppl A():73-82. PubMed ID: 2154441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Protein binding of clarithromycin in patients with chronic renal failure].
    Yago K; Kuroyama M; Motohashi S; Kumano K
    Jpn J Antibiot; 1996 Mar; 49(3):256-63. PubMed ID: 8935121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Warfarin interaction with erythromycin.
    Sato RI; Gray DR; Brown SE
    Arch Intern Med; 1984 Dec; 144(12):2413-4. PubMed ID: 6508448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of erythromycin base to human plasma proteins.
    Prandota J; Tillement JP; d'Athis P; Campos H; Barre J
    J Int Med Res; 1980; 8 Suppl 2():1-8. PubMed ID: 7429002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport characteristics of clarithromycin, azithromycin and telithromycin, antibiotics applied for treatment of respiratory infections, in Calu-3 cell monolayers as model lung epithelial cells.
    Togami K; Chono S; Morimoto K
    Pharmazie; 2012 May; 67(5):389-93. PubMed ID: 22764569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Clinical pharmacokinetics of azithromycin].
    Singlas E
    Pathol Biol (Paris); 1995 Jun; 43(6):505-11. PubMed ID: 8539072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imidazoquinolines with improved pharmacokinetic properties induce a high IFNα to TNFα ratio
    Keppler M; Straß S; Geiger S; Fischer T; Späth N; Weinstein T; Schwamborn A; Guezguez J; Guse JH; Laufer S; Burnet M
    Front Immunol; 2023; 14():1168252. PubMed ID: 37409123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasma Protein Binding Rate and Pharmacokinetics of Lekethromycin in Rats.
    Sun P; Xiao H; Qiu J; Cao Y; Kong J; Zhang S; Cao X
    Antibiotics (Basel); 2022 Sep; 11(9):. PubMed ID: 36140019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macrolides: From Toxins to Therapeutics.
    Lenz KD; Klosterman KE; Mukundan H; Kubicek-Sutherland JZ
    Toxins (Basel); 2021 May; 13(5):. PubMed ID: 34065929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid and Solid Self-Emulsifying Drug Delivery Systems (SEDDs) as Carriers for the Oral Delivery of Azithromycin: Optimization, In Vitro Characterization and Stability Assessment.
    Abou Assi R; M Abdulbaqi I; Seok Ming T; Siok Yee C; A Wahab H; Asif SM; Darwis Y
    Pharmaceutics; 2020 Nov; 12(11):. PubMed ID: 33158058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacological plasticity-How do you hit a moving target?
    Parnham MJ; Geisslinger G
    Pharmacol Res Perspect; 2019 Dec; 7(6):e00532. PubMed ID: 31768257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PharmGKB summary: Macrolide antibiotic pathway, pharmacokinetics/pharmacodynamics.
    Fohner AE; Sparreboom A; Altman RB; Klein TE
    Pharmacogenet Genomics; 2017 Apr; 27(4):164-167. PubMed ID: 28146011
    [No Abstract]   [Full Text] [Related]  

  • 20. Clarithromycin, Midazolam, and Digoxin: Application of PBPK Modeling to Gain New Insights into Drug-Drug Interactions and Co-medication Regimens.
    Moj D; Hanke N; Britz H; Frechen S; Kanacher T; Wendl T; Haefeli WE; Lehr T
    AAPS J; 2017 Jan; 19(1):298-312. PubMed ID: 27822600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.