BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 18755942)

  • 1. Natural selection on a major armor gene in threespine stickleback.
    Barrett RD; Rogers SM; Schluter D
    Science; 2008 Oct; 322(5899):255-7. PubMed ID: 18755942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution. Armor development and fitness.
    Cresko WA
    Science; 2008 Oct; 322(5899):204-6. PubMed ID: 18845737
    [No Abstract]   [Full Text] [Related]  

  • 3. Environment specific pleiotropy facilitates divergence at the Ectodysplasin locus in threespine stickleback.
    Barrett RD; Rogers SM; Schluter D
    Evolution; 2009 Nov; 63(11):2831-7. PubMed ID: 19545262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predation's role in repeated phenotypic and genetic divergence of armor in threespine stickleback.
    Marchinko KB
    Evolution; 2009 Jan; 63(1):127-38. PubMed ID: 18803682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles.
    Colosimo PF; Hosemann KE; Balabhadra S; Villarreal G; Dickson M; Grimwood J; Schmutz J; Myers RM; Schluter D; Kingsley DM
    Science; 2005 Mar; 307(5717):1928-33. PubMed ID: 15790847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong and consistent natural selection associated with armour reduction in sticklebacks.
    LE Rouzic A; Østbye K; Klepaker TO; Hansen TF; Bernatchez L; Schluter D; Vøllestad LA
    Mol Ecol; 2011 Jun; 20(12):2483-93. PubMed ID: 21443674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A gene with major phenotypic effects as a target for selection vs. homogenizing gene flow.
    Raeymaekers JA; Konijnendijk N; Larmuseau MH; Hellemans B; De Meester L; Volckaert FA
    Mol Ecol; 2014 Jan; 23(1):162-81. PubMed ID: 24192132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel evolution by correlated response: lateral plate reduction in threespine stickleback.
    Marchinko KB; Schluter D
    Evolution; 2007 May; 61(5):1084-90. PubMed ID: 17492963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive evolution of lateral plates in three-spined stickleback Gasterosteus aculeatus: a case study in functional analysis of natural variation.
    Barrett RD
    J Fish Biol; 2010 Aug; 77(2):311-28. PubMed ID: 20646158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The utility of QTL-Linked markers to detect selective sweeps in natural populations--a case study of the EDA gene and a linked marker in threespine stickleback.
    Cano JM; Matsuba C; Mäkinen H; Merilä J
    Mol Ecol; 2006 Dec; 15(14):4613-21. PubMed ID: 17107487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constraints on utilization of the EDA-signaling pathway in threespine stickleback evolution.
    Knecht AK; Hosemann KE; Kingsley DM
    Evol Dev; 2007; 9(2):141-54. PubMed ID: 17371397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple evolutionary pathways to decreased lateral plate coverage in freshwater threespine sticklebacks.
    Leinonen T; McCairns RJ; Herczeg G; Merilä J
    Evolution; 2012 Dec; 66(12):3866-75. PubMed ID: 23206143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predation-imposed selection on threespine stickleback (Gasterosteus aculeatus) morphology: a test of the refuge use hypothesis.
    Leinonen T; Herczeg G; Cano JM; Merilä J
    Evolution; 2011 Oct; 65(10):2916-26. PubMed ID: 21967432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel evolution of Pitx1 underlies pelvic reduction in Scottish threespine stickleback (Gasterosteus aculeatus).
    Coyle SM; Huntingford FA; Peichel CL
    J Hered; 2007; 98(6):581-6. PubMed ID: 17693397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global analysis of genes involved in freshwater adaptation in threespine sticklebacks (Gasterosteus aculeatus).
    DeFaveri J; Shikano T; Shimada Y; Goto A; Merilä J
    Evolution; 2011 Jun; 65(6):1800-7. PubMed ID: 21644964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reverse evolution of armor plates in the threespine stickleback.
    Kitano J; Bolnick DI; Beauchamp DA; Mazur MM; Mori S; Nakano T; Peichel CL
    Curr Biol; 2008 May; 18(10):769-774. PubMed ID: 18485710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The genetics of adaptive shape shift in stickleback: pleiotropy and effect size.
    Albert AY; Sawaya S; Vines TH; Knecht AK; Miller CT; Summers BR; Balabhadra S; Kingsley DM; Schluter D
    Evolution; 2008 Jan; 62(1):76-85. PubMed ID: 18005154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Should I stay or should I go? The Ectodysplasin locus is associated with behavioural differences in threespine stickleback.
    Barrett RD; Vines TH; Bystriansky JS; Schulte PM
    Biol Lett; 2009 Dec; 5(6):788-91. PubMed ID: 19656860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural selection and the genetics of adaptation in threespine stickleback.
    Schluter D; Marchinko KB; Barrett RD; Rogers SM
    Philos Trans R Soc Lond B Biol Sci; 2010 Aug; 365(1552):2479-86. PubMed ID: 20643737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discriminating selection on lateral plate phenotype and its underlying gene, Ectodysplasin, in threespine stickleback.
    Rennison DJ; Heilbron K; Barrett RD; Schluter D
    Am Nat; 2015 Jan; 185(1):150-6. PubMed ID: 25560560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.