These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 18755972)

  • 1. Inverse velocity dependence of vibrationally promoted electron emission from a metal surface.
    Nahler NH; White JD; Larue J; Auerbach DJ; Wodtke AM
    Science; 2008 Aug; 321(5893):1191-4. PubMed ID: 18755972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibrationally promoted electron emission from low work-function metal surfaces.
    White JD; Chen J; Matsiev D; Auerbach DJ; Wodtke AM
    J Chem Phys; 2006 Feb; 124(6):64702. PubMed ID: 16483224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron kinetic energies from vibrationally promoted surface exoemission: evidence for a vibrational autodetachment mechanism.
    LaRue JL; Schäfer T; Matsiev D; Velarde L; Nahler NH; Auerbach DJ; Wodtke AM
    J Phys Chem A; 2011 Dec; 115(50):14306-14. PubMed ID: 22112161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of vibrationally excited NO in promoting electron emission when colliding with a metal surface: a nonadiabatic dynamic model.
    Katz G; Zeiri Y; Kosloff R
    J Phys Chem B; 2005 Oct; 109(40):18876-80. PubMed ID: 16853429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical steering and electronic excitation in NO scattering from a gold surface.
    Shenvi N; Roy S; Tully JC
    Science; 2009 Nov; 326(5954):829-32. PubMed ID: 19892977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibrationally promoted electron emission at a metal surface: electron kinetic energy distributions.
    Larue J; Schäfer T; Matsiev D; Velarde L; Nahler NH; Auerbach DJ; Wodtke AM
    Phys Chem Chem Phys; 2011 Jan; 13(1):97-9. PubMed ID: 21076786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemically induced electronic excitations at metal surfaces.
    Gergen B; Nienhaus H; Weinberg WH; McFarland EW
    Science; 2001 Dec; 294(5551):2521-3. PubMed ID: 11752571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion of large-amplitude vibration to electron excitation at a metal surface.
    White JD; Chen J; Matsiev D; Auerbach DJ; Wodtke AM
    Nature; 2005 Feb; 433(7025):503-5. PubMed ID: 15690036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. State-to-state time-of-flight measurements of NO scattering from Au(111): direct observation of translation-to-vibration coupling in electronically nonadiabatic energy transfer.
    Golibrzuch K; Shirhatti PR; Altschäffel J; Rahinov I; Auerbach DJ; Wodtke AM; Bartels C
    J Phys Chem A; 2013 Sep; 117(36):8750-60. PubMed ID: 23808714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy transfer of highly vibrationally excited naphthalene. I. Translational collision energy dependence.
    Liu CL; Hsu HC; Hsu YC; Ni CK
    J Chem Phys; 2007 Sep; 127(10):104311. PubMed ID: 17867751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear quantum effects on the nonadiabatic decay mechanism of an excited hydrated electron.
    Borgis D; Rossky PJ; Turi L
    J Chem Phys; 2007 Nov; 127(17):174508. PubMed ID: 17994828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new ab initio potential energy surface for studying vibrational relaxation in NO(v) + NO collisions.
    Pajón-Suárez P; Rubayo-Soneira J; Hernández-Lamoneda R
    J Phys Chem A; 2011 Apr; 115(13):2892-9. PubMed ID: 21410176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The importance of accurate adiabatic interaction potentials for the correct description of electronically nonadiabatic vibrational energy transfer: a combined experimental and theoretical study of NO(v = 3) collisions with a Au(111) surface.
    Golibrzuch K; Shirhatti PR; Rahinov I; Kandratsenka A; Auerbach DJ; Wodtke AM; Bartels C
    J Chem Phys; 2014 Jan; 140(4):044701. PubMed ID: 25669561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density matrix treatment of combined instantaneous and delayed dissipation for an electronically excited adsorbate on a solid surface.
    Leathers AS; Micha DA; Kilin DS
    J Chem Phys; 2009 Oct; 131(14):144106. PubMed ID: 19831432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical determination of rate constants for vibrational relaxation and reaction of OH(X 2Pi, v = 1) with O(3P) atoms.
    Kłos JA; Lique F; Alexander MH; Dagdigian PJ
    J Chem Phys; 2008 Aug; 129(6):064306. PubMed ID: 18715068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonadiabatic dynamics at metal surfaces: independent-electron surface hopping.
    Shenvi N; Roy S; Tully JC
    J Chem Phys; 2009 May; 130(17):174107. PubMed ID: 19425769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient vibrational and translational excitations of a solid metal surface: State-to-state time-of-flight measurements of HCl(v=2,J=1) scattering from Au(111).
    Rahinov I; Cooper R; Yuan C; Yang X; Auerbach DJ; Wodtke AM
    J Chem Phys; 2008 Dec; 129(21):214708. PubMed ID: 19063576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic to vibrational energy transfer assisted by interacting transition dipole moments: a quantum model for the nonadiabatic I2(E) + CF4 collisions.
    Suleimanov YV; Buchachenko AA
    J Phys Chem A; 2007 Sep; 111(37):8959-67. PubMed ID: 17725333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excited electronic states and nonadiabatic effects in contemporary chemical dynamics.
    Mahapatra S
    Acc Chem Res; 2009 Aug; 42(8):1004-15. PubMed ID: 19456094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical and experimental studies of collision-induced electronic energy transfer from v=0-3 of the E(0g +) ion-pair state of Br2: collisions with He and Ar.
    Hutchison JM; O'Hern RR; Stephenson TA; Suleimanov YV; Buchachenko AA
    J Chem Phys; 2008 May; 128(18):184311. PubMed ID: 18532816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.