BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 18756096)

  • 1. Proteomic analysis of recombinant Saccharomyces cerevisiae upon iron deficiency induced via human H-ferritin production.
    Seo HY; Chang YJ; Chung YJ; Kim KS
    J Microbiol Biotechnol; 2008 Aug; 18(8):1368-76. PubMed ID: 18756096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced expression and functional characterization of the human ferritin H- and L-chain genes in Saccharomyces cerevisiae.
    Seo HY; Chung YJ; Kim SJ; Park CU; Kim KS
    Appl Microbiol Biotechnol; 2003 Nov; 63(1):57-63. PubMed ID: 12768248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative proteomic analyses of the yeast Saccharomyces cerevisiae KNU5377 strain against menadione-induced oxidative stress.
    Kim I; Yun H; Jin I
    J Microbiol Biotechnol; 2007 Feb; 17(2):207-17. PubMed ID: 18051751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific aspartate residues in FET3 control high-affinity iron transport in Saccharomyces cerevisiae.
    Bonaccorsi di Patti MC; Felice MR; De Domenico I; Lania A; Alaleona F; Musci G
    Yeast; 2005 Jul; 22(9):677-87. PubMed ID: 16032772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced expression of high-affinity iron transporters via H-ferritin production in yeast.
    Kim KS; Chang YJ; Chung YJ; Park CU; Seo HY
    J Biochem Mol Biol; 2007 Jan; 40(1):82-7. PubMed ID: 17244486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The physiological role of CPR1 in Saccharomyces cerevisiae KNU5377 against menadione stress by proteomics.
    Kim IS; Yun HS; Kwak SH; Jin IN
    J Microbiol; 2007 Aug; 45(4):326-32. PubMed ID: 17846586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis of Saccharomyces cerevisiae.
    Pham TK; Wright PC
    Expert Rev Proteomics; 2007 Dec; 4(6):793-813. PubMed ID: 18067417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Search for novel stress-responsive protein components using a yeast mutant lacking two cytosolic Hsp70 genes, SSA1 and SSA2.
    Matsumoto R; Rakwal R; Agrawal GK; Jung YH; Jwa NS; Yonekura M; Iwahashi H; Akama K
    Mol Cells; 2006 Jun; 21(3):381-8. PubMed ID: 16819301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring novel function of yeast Ssa1/2p by quantitative profiling proteomics using NanoESI-LC-MS/MS.
    Matsumoto R; Nam HW; Agrawal GK; Kim YS; Iwahashi H; Rakwal R
    J Proteome Res; 2007 Sep; 6(9):3465-74. PubMed ID: 17691831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal quantitative proteomics of Saccharomyces cerevisiae in response to a nonlethal concentration of furfural.
    Lin FM; Tan Y; Yuan YJ
    Proteomics; 2009 Dec; 9(24):5471-83. PubMed ID: 19834894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation.
    Cheng JS; Zhou X; Ding MZ; Yuan YJ
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):909-23. PubMed ID: 19488749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical proteomic study of isoprenoid chain interactome with a synthetic photoaffinity probe.
    Tian R; Li L; Tang W; Liu H; Ye M; Zhao ZK; Zou H
    Proteomics; 2008 Aug; 8(15):3094-104. PubMed ID: 18615431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative stress studies in yeast with a frataxin mutant: a proteomics perspective.
    Kim JH; Sedlak M; Gao Q; Riley CP; Regnier FE; Adamec J
    J Proteome Res; 2010 Feb; 9(2):730-6. PubMed ID: 19957947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation.
    Pham TK; Wright PC
    J Proteome Res; 2008 Nov; 7(11):4766-74. PubMed ID: 18808174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ferritin heavy chain-mediated iron homeostasis and subsequent increased reactive oxygen species production are essential for epithelial-mesenchymal transition.
    Zhang KH; Tian HY; Gao X; Lei WW; Hu Y; Wang DM; Pan XC; Yu ML; Xu GJ; Zhao FK; Song JG
    Cancer Res; 2009 Jul; 69(13):5340-8. PubMed ID: 19531652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning of Pichia pastoris Fet3: insights into the high affinity iron uptake system.
    Paronetto MP; Miele R; Maugliani A; Borro M; Bonaccorsi di Patti MC
    Arch Biochem Biophys; 2001 Aug; 392(1):162-7. PubMed ID: 11469807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-transcriptional regulation of gene expression in response to iron deficiency: co-ordinated metabolic reprogramming by yeast mRNA-binding proteins.
    Vergara SV; Thiele DJ
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):1088-90. PubMed ID: 18793194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional and immunological analysis of recombinant mouse H- and L-ferritins from Escherichia coli.
    Santambrogio P; Cozzi A; Levi S; Rovida E; Magni F; Albertini A; Arosio P
    Protein Expr Purif; 2000 Jun; 19(1):212-8. PubMed ID: 10833409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A proteomic approach to analysing responses of Arabidopsis thaliana callus cells to clinostat rotation.
    Wang H; Zheng HQ; Sha W; Zeng R; Xia QC
    J Exp Bot; 2006; 57(4):827-35. PubMed ID: 16449375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruption of iron homeostasis in Saccharomyces cerevisiae by high zinc levels: a genome-wide study.
    Pagani MA; Casamayor A; Serrano R; Atrian S; AriƱo J
    Mol Microbiol; 2007 Jul; 65(2):521-37. PubMed ID: 17630978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.