These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

742 related articles for article (PubMed ID: 18756556)

  • 1. Donor-acceptor systems: energy transfer from CdS quantum dots/rods to Nile Red dye.
    Sadhu S; Patra A
    Chemphyschem; 2008 Oct; 9(14):2052-8. PubMed ID: 18756556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors.
    Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H
    J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum dots acting as energy acceptors with organic dyes as donors in solution.
    Xu H; Huang X; Zhang W; Chen G; Zhu W; Zhong X
    Chemphyschem; 2010 Oct; 11(14):3167-71. PubMed ID: 20872922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence quenching of CdS quantum dots by 4-azetidinyl-7-nitrobenz-2-oxa-1,3-diazole: a mechanistic study.
    Santhosh K; Patra S; Soumya S; Khara DC; Samanta A
    Chemphyschem; 2011 Oct; 12(15):2735-41. PubMed ID: 22002891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregated CdS quantum dots: Host of biomolecular ligands.
    Narayanan SS; Pal SK
    J Phys Chem B; 2006 Dec; 110(48):24403-9. PubMed ID: 17134194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution.
    Chen J; Zheng A; Gao Y; He C; Wu G; Chen Y; Kai X; Zhu C
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Mar; 69(3):1044-52. PubMed ID: 17660001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution-phase single quantum dot fluorescence resonance energy transfer.
    Pons T; Medintz IL; Wang X; English DS; Mattoussi H
    J Am Chem Soc; 2006 Nov; 128(47):15324-31. PubMed ID: 17117885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-modified CdS quantum dots as luminescent probes for sulfadiazine determination.
    Liu M; Xu L; Cheng W; Zeng Y; Yan Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Oct; 70(5):1198-202. PubMed ID: 18201928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum dot-based multiplexed fluorescence resonance energy transfer.
    Clapp AR; Medintz IL; Uyeda HT; Fisher BR; Goldman ER; Bawendi MG; Mattoussi H
    J Am Chem Soc; 2005 Dec; 127(51):18212-21. PubMed ID: 16366574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer.
    Lu H; Schöps O; Woggon U; Niemeyer CM
    J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Förster resonance energy transfer investigations using quantum-dot fluorophores.
    Clapp AR; Medintz IL; Mattoussi H
    Chemphyschem; 2006 Jan; 7(1):47-57. PubMed ID: 16370019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembled quantum dot-sensitized multivalent DNA photonic wires.
    Boeneman K; Prasuhn DE; Blanco-Canosa JB; Dawson PE; Melinger JS; Ancona M; Stewart MH; Susumu K; Huston A; Medintz IL
    J Am Chem Soc; 2010 Dec; 132(51):18177-90. PubMed ID: 21141858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage.
    Gill R; Willner I; Shweky I; Banin U
    J Phys Chem B; 2005 Dec; 109(49):23715-9. PubMed ID: 16375352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence-based detection of point mutation in DNA sequences by CdS quantum dot aggregation.
    Kim T; Noh M; Lee H; Joo SW; Lee SY; Lee K
    J Phys Chem B; 2009 Oct; 113(43):14487-90. PubMed ID: 19810696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of high quality and stability CdS quantum dots with overlapped nucleation-growth process in large scale.
    Liu X; Jiang Y; Lan X; Li S; Wu D; Han T; Zhong H; Zhang Z
    J Colloid Interface Sci; 2011 Feb; 354(1):15-22. PubMed ID: 21040929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube.
    Biju V; Itoh T; Baba Y; Ishikawa M
    J Phys Chem B; 2006 Dec; 110(51):26068-74. PubMed ID: 17181259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the fluorescence resonance energy transfer between CdS quantum dots and Eosin Y.
    Yan Z; Zhang Z; Yu Y; Chen J
    Luminescence; 2015 Mar; 30(2):155-8. PubMed ID: 24888328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy transfer between CdSe/ZnS core/shell quantum dots and fluorescent proteins.
    Hering VR; Gibson G; Schumacher RI; Faljoni-Alario A; Politi MJ
    Bioconjug Chem; 2007; 18(6):1705-8. PubMed ID: 17900163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum dots arrangement and energy transfer control via charge-transfer complex achieved on poly(phenylene ethynylene)/schizophyllan nanowires.
    Shiraki T; Haraguchi S; Tsuchiya Y; Shinkai S
    Chem Asian J; 2009 Sep; 4(9):1434-41. PubMed ID: 19629958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can luminescent quantum dots be efficient energy acceptors with organic dye donors?
    Clapp AR; Medintz IL; Fisher BR; Anderson GP; Mattoussi H
    J Am Chem Soc; 2005 Feb; 127(4):1242-50. PubMed ID: 15669863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.