These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 18757046)

  • 21. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extreme learning machines for reverse engineering of gene regulatory networks from expression time series.
    Rubiolo M; Milone DH; Stegmayer G
    Bioinformatics; 2018 Apr; 34(7):1253-1260. PubMed ID: 29182723
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Applying attractor dynamics to infer gene regulatory interactions involved in cellular differentiation.
    Ghaffarizadeh A; Podgorski GJ; Flann NS
    Biosystems; 2017 May; 155():29-41. PubMed ID: 28254369
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inferring Large-Scale Gene Regulatory Networks Using a Randomized Algorithm Based on Singular Value Decomposition.
    Fan A; Wang H; Xiang H; Zou X
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):1997-2008. PubMed ID: 29993839
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MOVE: a multi-level ontology-based visualization and exploration framework for genomic networks.
    Bosman DW; Blom EJ; Ogao PJ; Kuipers OP; Roerdink JB
    In Silico Biol; 2007; 7(1):35-59. PubMed ID: 17688427
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SIN-KNO: A method of gene regulatory network inference using single-cell transcription and gene knockout data.
    Wang H; Lian Y; Li C; Ma Y; Yan Z; Dong C
    J Bioinform Comput Biol; 2019 Dec; 17(6):1950035. PubMed ID: 32019417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks.
    Moerman T; Aibar Santos S; Bravo González-Blas C; Simm J; Moreau Y; Aerts J; Aerts S
    Bioinformatics; 2019 Jun; 35(12):2159-2161. PubMed ID: 30445495
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CMIP: a software package capable of reconstructing genome-wide regulatory networks using gene expression data.
    Zheng G; Xu Y; Zhang X; Liu ZP; Wang Z; Chen L; Zhu XG
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):535. PubMed ID: 28155637
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatiotemporal Gene Expression Profiling and Network Inference: A Roadmap for Analysis, Visualization, and Key Gene Identification.
    Spurney R; Schwartz M; Gobble M; Sozzani R; Van den Broeck L
    Methods Mol Biol; 2021; 2328():47-65. PubMed ID: 34251619
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stability depends on positive autoregulation in Boolean gene regulatory networks.
    Pinho R; Garcia V; Irimia M; Feldman MW
    PLoS Comput Biol; 2014 Nov; 10(11):e1003916. PubMed ID: 25375153
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A sparse and decomposed particle swarm optimization for inferring gene regulatory networks based on fuzzy cognitive maps.
    Liu L; Liu J
    J Bioinform Comput Biol; 2019 Aug; 17(4):1950023. PubMed ID: 31617458
    [TBL] [Abstract][Full Text] [Related]  

  • 32. iCAVE: an open source tool for visualizing biomolecular networks in 3D, stereoscopic 3D and immersive 3D.
    Liluashvili V; Kalayci S; Fluder E; Wilson M; Gabow A; Gümüs ZH
    Gigascience; 2017 Aug; 6(8):1-13. PubMed ID: 28814063
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactive network visualization in Jupyter notebooks: visJS2jupyter.
    Rosenthal SB; Len J; Webster M; Gary A; Birmingham A; Fisch KM
    Bioinformatics; 2018 Jan; 34(1):126-128. PubMed ID: 28968701
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The ERATO Systems Biology Workbench: enabling interaction and exchange between software tools for computational biology.
    Hucka M; Finney A; Sauro HM; Bolouri H; Doyle J; Kitano H
    Pac Symp Biocomput; 2002; ():450-61. PubMed ID: 11928498
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new asynchronous parallel algorithm for inferring large-scale gene regulatory networks.
    Xiao X; Zhang W; Zou X
    PLoS One; 2015; 10(3):e0119294. PubMed ID: 25807392
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolutionary constraints on the complexity of genetic regulatory networks allow predictions of the total number of genetic interactions.
    Campos AI; Freyre-González JA
    Sci Rep; 2019 Mar; 9(1):3618. PubMed ID: 30842463
    [TBL] [Abstract][Full Text] [Related]  

  • 37. LogicNet: probabilistic continuous logics in reconstructing gene regulatory networks.
    Malekpour SA; Alizad-Rahvar AR; Sadeghi M
    BMC Bioinformatics; 2020 Jul; 21(1):318. PubMed ID: 32690031
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inference of plant gene regulatory networks using data-driven methods: A practical overview.
    Kulkarni SR; Vandepoele K
    Biochim Biophys Acta Gene Regul Mech; 2020 Jun; 1863(6):194447. PubMed ID: 31678628
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GeNeDA: An Open-Source Workflow for Design Automation of Gene Regulatory Networks Inspired from Microelectronics.
    Madec M; Pecheux F; Gendrault Y; Rosati E; Lallement C; Haiech J
    J Comput Biol; 2016 Oct; 23(10):841-55. PubMed ID: 27322846
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integration of genomic information with biological networks using Cytoscape.
    Bauer-Mehren A
    Methods Mol Biol; 2013; 1021():37-61. PubMed ID: 23715979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.