BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 18757093)

  • 1. The responses of osteoblasts, osteoclasts and endothelial cells to zirconium modified calcium-silicate-based ceramic.
    Ramaswamy Y; Wu C; Van Hummel A; Combes V; Grau G; Zreiqat H
    Biomaterials; 2008 Nov; 29(33):4392-402. PubMed ID: 18757093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological response of human bone cells to zinc-modified Ca-Si-based ceramics.
    Ramaswamy Y; Wu C; Zhou H; Zreiqat H
    Acta Biomater; 2008 Sep; 4(5):1487-97. PubMed ID: 18501689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sphene ceramics for orthopedic coating applications: an in vitro and in vivo study.
    Ramaswamy Y; Wu C; Dunstan CR; Hewson B; Eindorf T; Anderson GI; Zreiqat H
    Acta Biomater; 2009 Oct; 5(8):3192-204. PubMed ID: 19457458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of titanium into calcium silicate improved their chemical stability and biological properties.
    Wu C; Ramaswamy Y; Soeparto A; Zreiqat H
    J Biomed Mater Res A; 2008 Aug; 86(2):402-10. PubMed ID: 17969034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics.
    Ni S; Chang J
    J Biomater Appl; 2009 Aug; 24(2):139-58. PubMed ID: 18801892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties.
    Wu C; Ramaswamy Y; Kwik D; Zreiqat H
    Biomaterials; 2007 Jul; 28(21):3171-81. PubMed ID: 17445881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The in vivo osteogenesis of Mg or Zr-modified silicate-based bioceramic spheres.
    Luo T; Wu C; Zhang Y
    J Biomed Mater Res A; 2012 Sep; 100(9):2269-77. PubMed ID: 22499392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro study of the proliferation and growth of human bone marrow cells on apatite-wollastonite-2M glass ceramics.
    Magallanes-Perdomo M; De Aza AH; Mateus AY; Teixeira S; Monteiro FJ; De Aza S; Pena P
    Acta Biomater; 2010 Jun; 6(6):2254-63. PubMed ID: 20026290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of Zn contents on phase composition, chemical stability and cellular bioactivity in Zn-Ca-Si system ceramics.
    Wu C; Ramaswamy Y; Chang J; Woods J; Chen Y; Zreiqat H
    J Biomed Mater Res B Appl Biomater; 2008 Nov; 87(2):346-53. PubMed ID: 18464251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic.
    Wu C; Chang J; Wang J; Ni S; Zhai W
    Biomaterials; 2005 Jun; 26(16):2925-31. PubMed ID: 15603787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Baghdadite ceramics modulate the cross talk between human adipose stem cells and osteoblasts for bone regeneration.
    Lu Z; Wang G; Roohani-Esfahani I; Dunstan CR; Zreiqat H
    Tissue Eng Part A; 2014 Mar; 20(5-6):992-1002. PubMed ID: 24195838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of Ca2SiO4-Ca3(PO4)2 ceramics on adult human mesenchymal stem cell viability, adhesion, proliferation, differentiation and function.
    De Aza PN; García-Bernal D; Cragnolini F; Velasquez P; Meseguer-Olmo L
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4009-20. PubMed ID: 23910308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration.
    Germaini MM; Detsch R; Grünewald A; Magnaudeix A; Lalloue F; Boccaccini AR; Champion E
    Biomed Mater; 2017 Jun; 12(3):035008. PubMed ID: 28351999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro evaluation of osteoconductivity and cellular response of zirconia and alumina based ceramics.
    Pandey AK; Pati F; Mandal D; Dhara S; Biswas K
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3923-30. PubMed ID: 23910297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatibility and bioactivity of porous polymer-derived Ca-Mg silicate ceramics.
    Fiocco L; Li S; Stevens MM; Bernardo E; Jones JR
    Acta Biomater; 2017 Mar; 50():56-67. PubMed ID: 28017870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of altering the Si/Ca molar ratio of a calcium silicate cement on in vitro cell attachment.
    Shie MY; Chang HC; Ding SJ
    Int Endod J; 2012 Apr; 45(4):337-45. PubMed ID: 22044218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro bioactivity of novel tricalcium silicate ceramics.
    Zhao W; Chang J; Wang J; Zhai W; Wang Z
    J Mater Sci Mater Med; 2007 May; 18(5):917-23. PubMed ID: 17216580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strontium-doped calcium silicate bioceramic with enhanced in vitro osteogenic properties.
    No YJ; Roohaniesfahani S; Lu Z; Shi J; Zreiqat H
    Biomed Mater; 2017 Jun; 12(3):035003. PubMed ID: 28348275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteoblast proliferation and differentiation on dentin slices are modulated by pretreatment of the surface with tetracycline or osteoclasts.
    Schwartz Z; Lohmann CH; Wieland M; Cochran DL; Dean DD; Textor M; Bonewald LF; Boyan BD
    J Periodontol; 2000 Apr; 71(4):586-97. PubMed ID: 10807123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fibroblastic stromal cells express receptor activator of NF-kappa B ligand and support osteoclast differentiation.
    Quinn JM; Horwood NJ; Elliott J; Gillespie MT; Martin TJ
    J Bone Miner Res; 2000 Aug; 15(8):1459-66. PubMed ID: 10934644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.