BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 18757196)

  • 1. Analysis of coals and biomass pyrolysis using the distributed activation energy model.
    Li Z; Liu C; Chen Z; Qian J; Zhao W; Zhu Q
    Bioresour Technol; 2009 Jan; 100(2):948-52. PubMed ID: 18757196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: kinetic analysis for the drying and devolatilization stages.
    Chen D; Zheng Y; Zhu X
    Bioresour Technol; 2013 Mar; 131():40-6. PubMed ID: 23340100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic study of corn straw pyrolysis: comparison of two different three-pseudocomponent models.
    Li Z; Zhao W; Meng B; Liu C; Zhu Q; Zhao G
    Bioresour Technol; 2008 Nov; 99(16):7616-22. PubMed ID: 18343656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen conversion under rapid pyrolysis of two types of aquatic biomass and corresponding blends with coal.
    Yuan S; Chen XL; Li WF; Liu HF; Wang FC
    Bioresour Technol; 2011 Nov; 102(21):10124-30. PubMed ID: 21903383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrolysis characteristics and kinetics of oak trees using thermogravimetric analyzer and micro-tubing reactor.
    Park YH; Kim J; Kim SS; Park YK
    Bioresour Technol; 2009 Jan; 100(1):400-5. PubMed ID: 18693012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer.
    Shuping Z; Yulong W; Mingde Y; Chun L; Junmao T
    Bioresour Technol; 2010 Jan; 101(1):359-65. PubMed ID: 19720523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal.
    Wu Z; Wang S; Zhao J; Chen L; Meng H
    Bioresour Technol; 2014 Oct; 169():220-228. PubMed ID: 25058297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling of pyrolysis of coal-biomass blends using thermogravimetric analysis.
    Sadhukhan AK; Gupta P; Goyal T; Saha RK
    Bioresour Technol; 2008 Nov; 99(17):8022-6. PubMed ID: 18485697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Logistic distributed activation energy model--part 2: application to cellulose pyrolysis.
    Cai J; Yang S; Li T
    Bioresour Technol; 2011 Feb; 102(3):3642-4. PubMed ID: 21134741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of biopretreatment of corn stover with white-rot fungus on low-temperature pyrolysis products.
    Yang X; Ma F; Yu H; Zhang X; Chen S
    Bioresour Technol; 2011 Feb; 102(3):3498-503. PubMed ID: 21146404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A means to estimate thermal and kinetic parameters of coal dust layer from hot surface ignition tests.
    Park H; Rangwala AS; Dembsey NA
    J Hazard Mater; 2009 Aug; 168(1):145-55. PubMed ID: 19307057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The reuse of spent mushroom compost and coal tailings for energy recovery: comparison of thermal treatment technologies.
    Finney KN; Ryu C; Sharifi VN; Swithenbank J
    Bioresour Technol; 2009 Jan; 100(1):310-5. PubMed ID: 18625549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum chemical study of the thermal decomposition of o-quinone methide (6-methylene-2,4-cyclohexadien-1-one).
    Silva Gd; Bozzelli JW
    J Phys Chem A; 2007 Aug; 111(32):7987-94. PubMed ID: 17645323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical durability and combustion characteristics of pellets from biomass blends.
    Gil MV; Oulego P; Casal MD; Pevida C; Pis JJ; Rubiera F
    Bioresour Technol; 2010 Nov; 101(22):8859-67. PubMed ID: 20605093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of the pyrolysis of arundo, sawdust, corn stover and switch grass biomass by thermogravimetric analysis using a multi-stage model.
    Biney PO; Gyamerah M; Shen J; Menezes B
    Bioresour Technol; 2015 Mar; 179():113-122. PubMed ID: 25531683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermogravimetric study and kinetic analysis of fungal pretreated corn stover using the distributed activation energy model.
    Ma F; Zeng Y; Wang J; Yang Y; Yang X; Zhang X
    Bioresour Technol; 2013 Jan; 128():417-22. PubMed ID: 23201523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char.
    Ding L; Zhang Y; Wang Z; Huang J; Fang Y
    Bioresour Technol; 2014 Dec; 173():11-20. PubMed ID: 25280109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions.
    Gai C; Dong Y; Zhang T
    Bioresour Technol; 2013 Jan; 127():298-305. PubMed ID: 23138056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes.
    Quan C; Li A; Gao N
    Waste Manag; 2009 Aug; 29(8):2353-60. PubMed ID: 19398318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of biopretreatment on thermogravimetric and chemical characteristics of corn stover by different white-rot fungi.
    Yang X; Zeng Y; Ma F; Zhang X; Yu H
    Bioresour Technol; 2010 Jul; 101(14):5475-9. PubMed ID: 20207135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.