These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 18757473)

  • 1. Circadian photoreception: ageing and the eye's important role in systemic health.
    Turner PL; Mainster MA
    Br J Ophthalmol; 2008 Nov; 92(11):1439-44. PubMed ID: 18757473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Violet and blue light blocking intraocular lenses: photoprotection versus photoreception.
    Mainster MA
    Br J Ophthalmol; 2006 Jun; 90(6):784-92. PubMed ID: 16714268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blue-blocking IOLs decrease photoreception without providing significant photoprotection.
    Mainster MA; Turner PL
    Surv Ophthalmol; 2010; 55(3):272-89. PubMed ID: 19883931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short wavelength light filtering by the natural human lens and IOLs -- implications for entrainment of circadian rhythm.
    Brøndsted AE; Lundeman JH; Kessel L
    Acta Ophthalmol; 2013 Feb; 91(1):52-7. PubMed ID: 22136468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Cataract Surgery on Circadian Photoentrainment: A Randomized Trial of Blue-Blocking versus Neutral Intraocular Lenses.
    Brøndsted AE; Sander B; Haargaard B; Lund-Andersen H; Jennum P; Gammeltoft S; Kessel L
    Ophthalmology; 2015 Oct; 122(10):2115-24. PubMed ID: 26233628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of environmental light in sleep and health: effects of ocular aging and cataract surgery.
    Turner PL; Van Someren EJ; Mainster MA
    Sleep Med Rev; 2010 Aug; 14(4):269-80. PubMed ID: 20056462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of lens aging and cataract surgery on circadian rhythm.
    Yan SS; Wang W
    Int J Ophthalmol; 2016; 9(7):1066-74. PubMed ID: 27500118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystalline lens transmittance spectra and pupil sizes as factors affecting light-induced melatonin suppression in children and adults.
    Eto T; Ohashi M; Nagata K; Shin N; Motomura Y; Higuchi S
    Ophthalmic Physiol Opt; 2021 Jul; 41(4):900-910. PubMed ID: 33772847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Blue light and intraocular lenses (IOLs): Beliefs and realities].
    Desmettre T; Baillif S; Mathis T; Gatinel D; Mainster M
    J Fr Ophtalmol; 2024 Feb; 47(2):104043. PubMed ID: 38241770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimations of Retinal Blue-Light Irradiance Values and Melatonin Suppression Indices Through Clear and Yellow-Tinted Intraocular Lenses.
    Tanito M; Sano I; Okuno T; Ishiba Y; Ohira A
    Adv Exp Med Biol; 2018; 1074():53-60. PubMed ID: 29721927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling the effect of commercially available blue-blocking lenses on visual and non-visual functions.
    Alzahrani HS; Khuu SK; Roy M
    Clin Exp Optom; 2020 May; 103(3):339-346. PubMed ID: 31441122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsically photosensitive retinal ganglion cell function in relation to age: a pupillometric study in humans with special reference to the age-related optic properties of the lens.
    Herbst K; Sander B; Lund-Andersen H; Broendsted AE; Kessel L; Hansen MS; Kawasaki A
    BMC Ophthalmol; 2012 Apr; 12():4. PubMed ID: 22471313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultraviolet-B phototoxicity and hypothetical photomelanomagenesis: intraocular and crystalline lens photoprotection.
    Mainster MA; Turner PL
    Am J Ophthalmol; 2010 Apr; 149(4):543-9. PubMed ID: 20346776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age, lens transmittance, and the possible effects of light on melatonin suppression.
    Charman WN
    Ophthalmic Physiol Opt; 2003 Mar; 23(2):181-7. PubMed ID: 12641706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative effectiveness of a blue light-filtering intraocular lens for photoentrainment of the circadian rhythm.
    Patel AS; Dacey DM
    J Cataract Refract Surg; 2009 Mar; 35(3):529-39. PubMed ID: 19251148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of blue-blocking and neutral intraocular lenses on circadian photoentrainment and sleep one year after cataract surgery.
    Brøndsted AE; Haargaard B; Sander B; Lund-Andersen H; Jennum P; Kessel L
    Acta Ophthalmol; 2017 Jun; 95(4):344-351. PubMed ID: 27966269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of chromatic dispersion on pseudophakic optical performance.
    Zhao H; Mainster MA
    Br J Ophthalmol; 2007 Sep; 91(9):1225-9. PubMed ID: 17475697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Making (a) sense of non-visual ocular photoreception.
    Van Gelder RN
    Trends Neurosci; 2003 Sep; 26(9):458-61. PubMed ID: 12948652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pupillary responses to short-wavelength light are preserved in aging.
    Rukmini AV; Milea D; Aung T; Gooley JJ
    Sci Rep; 2017 Mar; 7():43832. PubMed ID: 28266650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Pupil and melanopsin photoreception].
    Ishikawa H
    Nippon Ganka Gakkai Zasshi; 2013 Mar; 117(3):246-68; discussion 269. PubMed ID: 23631256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.