These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 18757551)

  • 1. DOT/UFO emerges as a key factor in inflorescence patterning.
    Eckardt NA
    Plant Cell; 2008 Aug; 20(8):2003-5. PubMed ID: 18757551
    [No Abstract]   [Full Text] [Related]  

  • 2. Patterning of inflorescences and flowers by the F-Box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of petunia.
    Souer E; Rebocho AB; Bliek M; Kusters E; de Bruin RA; Koes R
    Plant Cell; 2008 Aug; 20(8):2033-48. PubMed ID: 18713949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of petunia pMADS3 in determination of floral organ and meristem identity, as revealed by its loss of function.
    Kapoor M; Tsuda S; Tanaka Y; Mayama T; Okuyama Y; Tsuchimoto S; Takatsuji H
    Plant J; 2002 Oct; 32(1):115-27. PubMed ID: 12366805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implications of region-specific gene expression for development of the partially fused petunia corolla.
    Preston JC; Powers B; Kostyun JL; Driscoll H; Zhang F; Zhong J
    Plant J; 2019 Oct; 100(1):158-175. PubMed ID: 31183889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inflorescence architecture: the transition from branches to flowers.
    Hake S
    Curr Biol; 2008 Dec; 18(23):R1106-8. PubMed ID: 19081048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary Co-Option of Floral Meristem Identity Genes for Patterning of the Flower-Like Asteraceae Inflorescence.
    Zhao Y; Zhang T; Broholm SK; Tähtiharju S; Mouhu K; Albert VA; Teeri TH; Elomaa P
    Plant Physiol; 2016 Sep; 172(1):284-96. PubMed ID: 27382139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterning and evolution of floral structures - marking time.
    McKim S; Hay A
    Curr Opin Genet Dev; 2010 Aug; 20(4):448-53. PubMed ID: 20452201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arabidopsis ovule development and its evolutionary conservation.
    Colombo L; Battaglia R; Kater MM
    Trends Plant Sci; 2008 Aug; 13(8):444-50. PubMed ID: 18571972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of floral meristem determinacy in petunia by MADS-box transcription factors.
    Ferrario S; Shchennikova AV; Franken J; Immink RG; Angenent GC
    Plant Physiol; 2006 Mar; 140(3):890-8. PubMed ID: 16428599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inflorescence development in petunia: through the maze of botanical terminology.
    Castel R; Kusters E; Koes R
    J Exp Bot; 2010 May; 61(9):2235-46. PubMed ID: 20308206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of PhEXPA1 increases cell size, modifies cell wall polymer composition and affects the timing of axillary meristem development in Petunia hybrida.
    Zenoni S; Fasoli M; Tornielli GB; Dal Santo S; Sanson A; de Groot P; Sordo S; Citterio S; Monti F; Pezzotti M
    New Phytol; 2011 Aug; 191(3):662-677. PubMed ID: 21534969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capsicum annuum S (CaS) promotes reproductive transition and is required for flower formation in pepper (Capsicum annuum).
    Cohen O; Borovsky Y; David-Schwartz R; Paran I
    New Phytol; 2014 May; 202(3):1014-1023. PubMed ID: 24716519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PhGRL2 protein, interacting with PhACO1, is involved in flower senescence in the petunia.
    Tan Y; Liu J; Huang F; Guan J; Zhong S; Tang N; Zhao J; Yang W; Yu Y
    Mol Plant; 2014 Aug; 7(8):1384-1387. PubMed ID: 24618881
    [No Abstract]   [Full Text] [Related]  

  • 14. Interactions between gene activity and cell layers during floral development.
    Vincent CA; Carpenter R; Coen ES
    Plant J; 2003 Feb; 33(4):765-74. PubMed ID: 12609048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PhEXPA1, a Petunia hybrida expansin, is involved in cell wall metabolism and in plant architecture specification.
    Dal Santo S; Fasoli M; Cavallini E; Tornielli GB; Pezzotti M; Zenoni S
    Plant Signal Behav; 2011 Dec; 6(12):2031-4. PubMed ID: 22105031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Downregulation of the Petunia hybrida alpha-expansin gene PhEXP1 reduces the amount of crystalline cellulose in cell walls and leads to phenotypic changes in petal limbs.
    Zenoni S; Reale L; Tornielli GB; Lanfaloni L; Porceddu A; Ferrarini A; Moretti C; Zamboni A; Speghini A; Ferranti F; Pezzotti M
    Plant Cell; 2004 Feb; 16(2):295-308. PubMed ID: 14742876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aberrant spikelet and panicle1, encoding a TOPLESS-related transcriptional co-repressor, is involved in the regulation of meristem fate in rice.
    Yoshida A; Ohmori Y; Kitano H; Taguchi-Shiobara F; Hirano HY
    Plant J; 2012 Apr; 70(2):327-39. PubMed ID: 22136599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppressor of sessile spikelets1 functions in the ramosa pathway controlling meristem determinacy in maize.
    Wu X; Skirpan A; McSteen P
    Plant Physiol; 2009 Jan; 149(1):205-19. PubMed ID: 18997117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UFO in the Arabidopsis inflorescence apex is required for floral-meristem identity and bract suppression.
    Hepworth SR; Klenz JE; Haughn GW
    Planta; 2006 Mar; 223(4):769-78. PubMed ID: 16244866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dicer-like1 homolog fuzzy tassel is required for the regulation of meristem determinacy in the inflorescence and vegetative growth in maize.
    Thompson BE; Basham C; Hammond R; Ding Q; Kakrana A; Lee TF; Simon SA; Meeley R; Meyers BC; Hake S
    Plant Cell; 2014 Dec; 26(12):4702-17. PubMed ID: 25465405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.