BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 18757579)

  • 1. Novel Parachlamydia acanthamoebae quantification method based on coculture with amoebae.
    Matsuo J; Hayashi Y; Nakamura S; Sato M; Mizutani Y; Asaka M; Yamaguchi H
    Appl Environ Microbiol; 2008 Oct; 74(20):6397-404. PubMed ID: 18757579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Host range of obligate intracellular bacterium Parachlamydia acanthamoebae.
    Hayashi Y; Nakamura S; Matsuo J; Fukumoto T; Yoshida M; Takahashi K; Mizutani Y; Yao T; Yamaguchi H
    Microbiol Immunol; 2010 Nov; 54(11):707-13. PubMed ID: 21155362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of free-living amoebae on presence of Parachlamydia acanthamoebae in the hospital environment and its survival in vitro without requirement for amoebae.
    Fukumoto T; Matsuo J; Hayashi Y; Oguri S; Nakamura S; Mizutani Y; Yao T; Akizawa K; Suzuki H; Shimizu C; Matsuno K; Yamaguchi H
    J Clin Microbiol; 2010 Sep; 48(9):3360-5. PubMed ID: 20631104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apoptosis Functions in Defense against Infection of Mammalian Cells with Environmental Chlamydiae.
    Brokatzky D; Kretz O; Häcker G
    Infect Immun; 2020 May; 88(6):. PubMed ID: 32179584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of an environmental Chlamydia strain from activated sludge by co-cultivation with Acanthamoeba sp.
    Collingro A; Poppert S; Heinz E; Schmitz-Esser S; Essig A; Schweikert M; Wagner M; Horn M
    Microbiology (Reading); 2005 Jan; 151(Pt 1):301-309. PubMed ID: 15632447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibiotic susceptibility of Neochlamydia hartmanellae and Parachlamydia acanthamoebae in amoebae.
    Vouga M; Diabi H; Boulos A; Baud D; Raoult D; Greub G
    Microbes Infect; 2015; 17(11-12):761-5. PubMed ID: 26279002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathogenic potential of novel Chlamydiae and diagnostic approaches to infections due to these obligate intracellular bacteria.
    Corsaro D; Greub G
    Clin Microbiol Rev; 2006 Apr; 19(2):283-97. PubMed ID: 16614250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microorganisms resistant to free-living amoebae.
    Greub G; Raoult D
    Clin Microbiol Rev; 2004 Apr; 17(2):413-33. PubMed ID: 15084508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Chlamydiales strains isolated from a water treatment plant.
    Corsaro D; Feroldi V; Saucedo G; Ribas F; Loret JF; Greub G
    Environ Microbiol; 2009 Jan; 11(1):188-200. PubMed ID: 18793313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parachlamydia acanthamoebae enters and multiplies within human macrophages and induces their apoptosis [corrected].
    Greub G; Mege JL; Raoult D
    Infect Immun; 2003 Oct; 71(10):5979-85. PubMed ID: 14500518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular trafficking of Parachlamydia acanthamoebae.
    Greub G; Mege JL; Gorvel JP; Raoult D; Méresse S
    Cell Microbiol; 2005 Apr; 7(4):581-9. PubMed ID: 15760458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amoebal endosymbiont Protochlamydia induces apoptosis to human immortal HEp-2 cells.
    Ito A; Matsuo J; Nakamura S; Yoshida A; Okude M; Hayashi Y; Sakai H; Yoshida M; Takahashi K; Yamaguchi H
    PLoS One; 2012; 7(1):e30270. PubMed ID: 22276171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Criblamydia sequanensis, a new intracellular Chlamydiales isolated from Seine river water using amoebal co-culture.
    Thomas V; Casson N; Greub G
    Environ Microbiol; 2006 Dec; 8(12):2125-35. PubMed ID: 17107554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A domino-like chlamydial attachment process: concurrent Parachlamydia acanthamoebae attachment to amoebae is required for several amoebal released molecules and serine protease activity.
    Hayashi Y; Yimin ; Matsuo J; Nakamura S; Kunichika M; Yoshida M; Takahashi K; Yamaguchi H
    Microbiology (Reading); 2012 Jun; 158(Pt 6):1607-1614. PubMed ID: 22403190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic aspects of Parachlamydia acanthamoebae infection in Acanthamoeba spp.
    Leitsch D; Köhsler M; Marchetti-Deschmann M; Deutsch A; Allmaier G; König L; Sixt BS; Duchêne M; Walochnik J
    ISME J; 2010 Nov; 4(11):1366-74. PubMed ID: 20485385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amoebal endosymbiont Parachlamydia acanthamoebae Bn9 can grow in immortal human epithelial HEp-2 cells at low temperature; an in vitro model system to study chlamydial evolution.
    Yamane C; Yamazaki T; Nakamura S; Matsuo J; Ishida K; Yamazaki S; Oguri S; Shouji N; Hayashi Y; Yoshida M; Yimin ; Yamaguchi H
    PLoS One; 2015; 10(2):e0116486. PubMed ID: 25643359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of novel Chlamydiae and Legionellales from human nasal samples of healthy volunteers.
    Corsaro D; Venditti D
    Folia Microbiol (Praha); 2015 Jul; 60(4):325-34. PubMed ID: 25697709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parachlamydia acanthamoebae enters and multiplies within pneumocytes and lung fibroblasts.
    Casson N; Medico N; Bille J; Greub G
    Microbes Infect; 2006 Apr; 8(5):1294-300. PubMed ID: 16697235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight into cross-talk between intra-amoebal pathogens.
    Gimenez G; Bertelli C; Moliner C; Robert C; Raoult D; Fournier PE; Greub G
    BMC Genomics; 2011 Nov; 12():542. PubMed ID: 22047552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Severe pneumonia due to Parachlamydia acanthamoebae following intranasal inoculation: a mice model.
    Pilloux L; Casson N; Sommer K; Klos A; Stehle JC; Pusztaszeri M; Greub G
    Microbes Infect; 2015; 17(11-12):755-60. PubMed ID: 26340890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.