BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 18757790)

  • 1. Introduction of marker-free deletions in Bacillus subtilis using the AraR repressor and the ara promoter.
    Liu S; Endo K; Ara K; Ozaki K; Ogasawara N
    Microbiology (Reading); 2008 Sep; 154(Pt 9):2562-2570. PubMed ID: 18757790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Negative regulation of L-arabinose metabolism in Bacillus subtilis: characterization of the araR (araC) gene.
    Sá-Nogueira I; Mota LJ
    J Bacteriol; 1997 Mar; 179(5):1598-608. PubMed ID: 9045819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of the arabinose regulon in Bacillus subtilis by AraR in vivo: crucial roles of operators, cooperativity, and DNA looping.
    Mota LJ; Sarmento LM; de Sá-Nogueira I
    J Bacteriol; 2001 Jul; 183(14):4190-201. PubMed ID: 11418559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mode of action of AraR, the key regulator of L-arabinose metabolism in Bacillus subtilis.
    Mota LJ; Tavares P; Sá-Nogueira I
    Mol Microbiol; 1999 Aug; 33(3):476-89. PubMed ID: 10417639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning, functional analysis, and transcriptional regulation of the Bacillus subtilis araE gene involved in L-arabinose utilization.
    Sá-Nogueira I; Ramos SS
    J Bacteriol; 1997 Dec; 179(24):7705-11. PubMed ID: 9401028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New integrative method to generate Bacillus subtilis recombinant strains free of selection markers.
    Brans A; Filée P; Chevigné A; Claessens A; Joris B
    Appl Environ Microbiol; 2004 Dec; 70(12):7241-50. PubMed ID: 15574923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional regulation of genes encoding arabinan-degrading enzymes in Bacillus subtilis.
    Raposo MP; Inácio JM; Mota LJ; de Sá-Nogueira I
    J Bacteriol; 2004 Mar; 186(5):1287-96. PubMed ID: 14973026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new mutation delivery system for genome-scale approaches in Bacillus subtilis.
    Fabret C; Ehrlich SD; Noirot P
    Mol Microbiol; 2002 Oct; 46(1):25-36. PubMed ID: 12366828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A versatile mini-mazF-cassette for marker-free targeted genetic modification in Bacillus subtilis.
    Lin Z; Deng B; Jiao Z; Wu B; Xu X; Yu D; Li W
    J Microbiol Methods; 2013 Nov; 95(2):207-14. PubMed ID: 23911571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct molecular mechanisms involved in carbon catabolite repression of the arabinose regulon in Bacillus subtilis.
    Inácio JM; Costa C; de Sá-Nogueira I
    Microbiology (Reading); 2003 Sep; 149(Pt 9):2345-2355. PubMed ID: 12949161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. mazF, a novel counter-selectable marker for unmarked chromosomal manipulation in Bacillus subtilis.
    Zhang XZ; Yan X; Cui ZL; Hong Q; Li SP
    Nucleic Acids Res; 2006 May; 34(9):e71. PubMed ID: 16714443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing key DNA contacts in AraR-mediated transcriptional repression of the Bacillus subtilis arabinose regulon.
    Franco IS; Mota LJ; Soares CM; de Sá-Nogueira I
    Nucleic Acids Res; 2007; 35(14):4755-66. PubMed ID: 17617643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Bacillus subtilis L-arabinose (ara) operon: nucleotide sequence, genetic organization and expression.
    S-Nogueira I; Nogueira TV; Soares S; de Lencastre H
    Microbiology (Reading); 1997 Mar; 143 ( Pt 3)():957-969. PubMed ID: 9084180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome engineering using a synthetic gene circuit in Bacillus subtilis.
    Jeong DE; Park SH; Pan JG; Kim EJ; Choi SK
    Nucleic Acids Res; 2015 Mar; 43(6):e42. PubMed ID: 25552415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient and precise construction of markerless manipulations in the Bacillus subtilis genome.
    Yu H; Yan X; Shen W; Shen Y; Zhang J; Li S
    J Microbiol Biotechnol; 2010 Jan; 20(1):45-53. PubMed ID: 20134232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A transcriptional activator, homologous to the Bacillus subtilis PurR repressor, is required for expression of purine biosynthetic genes in Lactococcus lactis.
    Kilstrup M; Martinussen J
    J Bacteriol; 1998 Aug; 180(15):3907-16. PubMed ID: 9683488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A binding site for activation by the Bacillus subtilis AhrC protein, a repressor/activator of arginine metabolism.
    Klingel U; Miller CM; North AK; Stockley PG; Baumberg S
    Mol Gen Genet; 1995 Aug; 248(3):329-40. PubMed ID: 7565595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and nucleotide sequence of the Bacillus subtilis ansR gene, which encodes a repressor of the ans operon coding for L-asparaginase and L-aspartase.
    Sun D; Setlow P
    J Bacteriol; 1993 May; 175(9):2501-6. PubMed ID: 8478318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the putative bglPH operon for aryl-beta-glucoside utilization in Bacillus subtilis.
    Krüger S; Hecker M
    J Bacteriol; 1995 Oct; 177(19):5590-7. PubMed ID: 7559347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AraR, an l-Arabinose-Responsive Transcriptional Regulator in Corynebacterium glutamicum ATCC 31831, Exerts Different Degrees of Repression Depending on the Location of Its Binding Sites within the Three Target Promoter Regions.
    Kuge T; Teramoto H; Inui M
    J Bacteriol; 2015 Dec; 197(24):3788-96. PubMed ID: 26416832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.