These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 18757796)

  • 1. Production of curcuminoids by Escherichia coli carrying an artificial biosynthesis pathway.
    Katsuyama Y; Matsuzawa M; Funa N; Horinouchi S
    Microbiology (Reading); 2008 Sep; 154(Pt 9):2620-2628. PubMed ID: 18757796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of Curcuminoids in
    Kim EJ; Cha MN; Kim BG; Ahn JH
    J Microbiol Biotechnol; 2017 May; 27(5):975-982. PubMed ID: 28274102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster.
    Hwang EI; Kaneko M; Ohnishi Y; Horinouchi S
    Appl Environ Microbiol; 2003 May; 69(5):2699-706. PubMed ID: 12732539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of curcuminoids from tyrosine by a metabolically engineered Escherichia coli using caffeic acid as an intermediate.
    Rodrigues JL; Araújo RG; Prather KL; Kluskens LD; Rodrigues LR
    Biotechnol J; 2015 Apr; 10(4):599-609. PubMed ID: 25641677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and application of an in vivo reporter assay for phenylalanine ammonia-lyase.
    Wang S; Zhang S; Zhou T; Zeng J; Zhan J
    Appl Microbiol Biotechnol; 2013 Sep; 97(17):7877-85. PubMed ID: 23907258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precursor-directed biosynthesis of curcumin analogs in Escherichia coli.
    Katsuyama Y; Hirose Y; Funa N; Ohnishi Y; Horinouchi S
    Biosci Biotechnol Biochem; 2010; 74(3):641-5. PubMed ID: 20208337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of dehydrogingerdione derivatives in Escherichia coli by exploiting a curcuminoid synthase from Oryza sativa and a β-oxidation pathway from Saccharomyces cerevisiae.
    Katsuyama Y; Ohnishi Y; Horinouchi S
    Chembiochem; 2010 Sep; 11(14):2034-41. PubMed ID: 20836122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo resveratrol production through modular engineering of an Escherichia coli-Saccharomyces cerevisiae co-culture.
    Yuan SF; Yi X; Johnston TG; Alper HS
    Microb Cell Fact; 2020 Jul; 19(1):143. PubMed ID: 32664999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased Production of Dicinnamoylmethane Via Improving Cellular Malonyl-CoA Level by Using a CRISPRi in Escherichia coli.
    Chu LL; Pandey RP; Dhakal D; Sohng JK
    Appl Biochem Biotechnol; 2020 Jan; 190(1):325-340. PubMed ID: 31853874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterologous production of flavanones in Escherichia coli: potential for combinatorial biosynthesis of flavonoids in bacteria.
    Kaneko M; Hwang EI; Ohnishi Y; Horinouchi S
    J Ind Microbiol Biotechnol; 2003 Aug; 30(8):456-61. PubMed ID: 12759810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Combinatorial Approach to Optimize the Production of Curcuminoids From Tyrosine in
    Rodrigues JL; Gomes D; Rodrigues LR
    Front Bioeng Biotechnol; 2020; 8():59. PubMed ID: 32117938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous production of curcuminoids.
    Rodrigues JL; Prather KL; Kluskens LD; Rodrigues LR
    Microbiol Mol Biol Rev; 2015 Mar; 79(1):39-60. PubMed ID: 25631288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of Escherichia coli for the synthesis of N-hydroxycinnamoyl tryptamine and serotonin.
    Lee SJ; Sim GY; Lee Y; Kim BG; Ahn JH
    J Ind Microbiol Biotechnol; 2017 Nov; 44(11):1551-1560. PubMed ID: 28819877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Step-by-step optimization of a heterologous pathway for de novo naringenin production in Escherichia coli.
    Gomes D; Rodrigues JL; Rodrigues LR
    Appl Microbiol Biotechnol; 2024 Aug; 108(1):435. PubMed ID: 39126431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of plant-specific flavones baicalein and scutellarein in an engineered E. coli from available phenylalanine and tyrosine.
    Li J; Tian C; Xia Y; Mutanda I; Wang K; Wang Y
    Metab Eng; 2019 Mar; 52():124-133. PubMed ID: 30496827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of the phenylpropanoid pathway in Saccharomyces cerevisiae.
    Jiang H; Wood KV; Morgan JA
    Appl Environ Microbiol; 2005 Jun; 71(6):2962-9. PubMed ID: 15932991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Escherichia coli Co-Cultures for Production of Curcuminoids From Glucose.
    Fang Z; Jones JA; Zhou J; Koffas MAG
    Biotechnol J; 2018 May; 13(5):e1700576. PubMed ID: 29149547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial synthesis of N-hydroxycinnamoyl phenethylamines and tyramines.
    Sim GY; Yang SM; Kim BG; Ahn JH
    Microb Cell Fact; 2015 Oct; 14():162. PubMed ID: 26463041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-pot synthesis of genistein from tyrosine by coincubation of genetically engineered Escherichia coli and Saccharomyces cerevisiae cells.
    Katsuyama Y; Miyahisa I; Funa N; Horinouchi S
    Appl Microbiol Biotechnol; 2007 Jan; 73(5):1143-9. PubMed ID: 16960736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of hydroxycinnamoyl anthranilates from glucose in Escherichia coli.
    Eudes A; Juminaga D; Baidoo EE; Collins FW; Keasling JD; Loqué D
    Microb Cell Fact; 2013 Jun; 12():62. PubMed ID: 23806124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.