These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 18757875)

  • 21. Automatic prediction of protein domains from sequence information using a hybrid learning system.
    Nagarajan N; Yona G
    Bioinformatics; 2004 Jun; 20(9):1335-60. PubMed ID: 14962932
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transmembrane helix prediction using amino acid property features and latent semantic analysis.
    Ganapathiraju M; Balakrishnan N; Reddy R; Klein-Seetharaman J
    BMC Bioinformatics; 2008; 9 Suppl 1(Suppl 1):S4. PubMed ID: 18315857
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Residue-rotamer-reduction algorithm for the protein side-chain conformation problem.
    Xie W; Sahinidis NV
    Bioinformatics; 2006 Jan; 22(2):188-94. PubMed ID: 16278239
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method.
    Bagos PG; Liakopoulos TD; Hamodrakas SJ
    BMC Bioinformatics; 2005 Jan; 6():7. PubMed ID: 15647112
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DINAMO: interactive protein alignment and model building.
    Bentz J; Baucom A; Hansen M; Gregoret L
    Bioinformatics; 1999 Apr; 15(4):309-16. PubMed ID: 10320399
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Threading using neural nEtwork (TUNE): the measure of protein sequence-structure compatibility.
    Lin K; May AC; Taylor WR
    Bioinformatics; 2002 Oct; 18(10):1350-7. PubMed ID: 12376379
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PROMALS: towards accurate multiple sequence alignments of distantly related proteins.
    Pei J; Grishin NV
    Bioinformatics; 2007 Apr; 23(7):802-8. PubMed ID: 17267437
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ProClust: improved clustering of protein sequences with an extended graph-based approach.
    Pipenbacher P; Schliep A; Schneckener S; Schönhuth A; Schomburg D; Schrader R
    Bioinformatics; 2002; 18 Suppl 2():S182-91. PubMed ID: 12386002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling protein loops with knowledge-based prediction of sequence-structure alignment.
    Peng HP; Yang AS
    Bioinformatics; 2007 Nov; 23(21):2836-42. PubMed ID: 17827204
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-sequential structure-based alignments reveal topology-independent core packing arrangements in proteins.
    Yuan X; Bystroff C
    Bioinformatics; 2005 Apr; 21(7):1010-9. PubMed ID: 15531601
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tools for integrated sequence-structure analysis with UCSF Chimera.
    Meng EC; Pettersen EF; Couch GS; Huang CC; Ferrin TE
    BMC Bioinformatics; 2006 Jul; 7():339. PubMed ID: 16836757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Algorithms for variable length Markov chain modeling.
    Bejerano G
    Bioinformatics; 2004 Mar; 20(5):788-9. PubMed ID: 14751999
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of protein structure alignments to iterated hidden Markov model protocols for structure prediction.
    Scheeff ED; Bourne PE
    BMC Bioinformatics; 2006 Sep; 7():410. PubMed ID: 16970830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ZPRED: predicting the distance to the membrane center for residues in alpha-helical membrane proteins.
    Granseth E; Viklund H; Elofsson A
    Bioinformatics; 2006 Jul; 22(14):e191-6. PubMed ID: 16873471
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Knowledge-based prediction of protein backbone conformation using a structural alphabet.
    Vetrivel I; Mahajan S; Tyagi M; Hoffmann L; Sanejouand YH; Srinivasan N; de Brevern AG; Cadet F; Offmann B
    PLoS One; 2017; 12(11):e0186215. PubMed ID: 29161266
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A structure-based method for protein sequence alignment.
    Kann MG; Thiessen PA; Panchenko AR; Schäffer AA; Altschul SF; Bryant SH
    Bioinformatics; 2005 Apr; 21(8):1451-6. PubMed ID: 15613392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins.
    Bateman A; Birney E; Durbin R; Eddy SR; Finn RD; Sonnhammer EL
    Nucleic Acids Res; 1999 Jan; 27(1):260-2. PubMed ID: 9847196
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DeepMSA: constructing deep multiple sequence alignment to improve contact prediction and fold-recognition for distant-homology proteins.
    Zhang C; Zheng W; Mortuza SM; Li Y; Zhang Y
    Bioinformatics; 2020 Apr; 36(7):2105-2112. PubMed ID: 31738385
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein homology detection by HMM-HMM comparison.
    Söding J
    Bioinformatics; 2005 Apr; 21(7):951-60. PubMed ID: 15531603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. FORESST: fold recognition from secondary structure predictions of proteins.
    Di Francesco V; Munson PJ; Garnier J
    Bioinformatics; 1999 Feb; 15(2):131-40. PubMed ID: 10089198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.