These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 18757876)

  • 1. SNAP predicts effect of mutations on protein function.
    Bromberg Y; Yachdav G; Rost B
    Bioinformatics; 2008 Oct; 24(20):2397-8. PubMed ID: 18757876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SNAP: predict effect of non-synonymous polymorphisms on function.
    Bromberg Y; Rost B
    Nucleic Acids Res; 2007; 35(11):3823-35. PubMed ID: 17526529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disease-related mutations predicted to impact protein function.
    Schaefer C; Bromberg Y; Achten D; Rost B
    BMC Genomics; 2012 Jun; 13 Suppl 4(Suppl 4):S11. PubMed ID: 22759649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models.
    Shihab HA; Gough J; Cooper DN; Stenson PD; Barker GL; Edwards KJ; Day IN; Gaunt TR
    Hum Mutat; 2013 Jan; 34(1):57-65. PubMed ID: 23033316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteins and domains vary in their tolerance of non-synonymous single nucleotide polymorphisms (nsSNPs).
    Yates CM; Sternberg MJ
    J Mol Biol; 2013 Apr; 425(8):1274-86. PubMed ID: 23357174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlating protein function and stability through the analysis of single amino acid substitutions.
    Bromberg Y; Rost B
    BMC Bioinformatics; 2009 Aug; 10 Suppl 8(Suppl 8):S8. PubMed ID: 19758472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A structural bioinformatics approach to the analysis of nonsynonymous single nucleotide polymorphisms (nsSNPs) and their relation to disease.
    Worth CL; Bickerton GR; Schreyer A; Forman JR; Cheng TM; Lee S; Gong S; Burke DF; Blundell TL
    J Bioinform Comput Biol; 2007 Dec; 5(6):1297-318. PubMed ID: 18172930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting functional effect of human missense mutations using PolyPhen-2.
    Adzhubei I; Jordan DM; Sunyaev SR
    Curr Protoc Hum Genet; 2013 Jan; Chapter 7():Unit7.20. PubMed ID: 23315928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutation analysis of pathogenic non-synonymous single nucleotide polymorphisms (nsSNPs) in WFS1 gene through computational approaches.
    Zhao J; Zhang S; Jiang Y; Liu Y; Zhu Q
    Sci Rep; 2023 Apr; 13(1):6774. PubMed ID: 37185285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination use of protein-protein interaction network topological features improves the predictive scores of deleterious non-synonymous single-nucleotide polymorphisms.
    Wu Y; Jing R; Jiang L; Jiang Y; Kuang Q; Ye L; Yang L; Li Y; Li M
    Amino Acids; 2014 Aug; 46(8):2025-35. PubMed ID: 24849655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the effects of amino acid substitutions on protein function.
    Ng PC; Henikoff S
    Annu Rev Genomics Hum Genet; 2006; 7():61-80. PubMed ID: 16824020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. dbSAP: single amino-acid polymorphism database for protein variation detection.
    Cao R; Shi Y; Chen S; Ma Y; Chen J; Yang J; Chen G; Shi T
    Nucleic Acids Res; 2017 Jan; 45(D1):D827-D832. PubMed ID: 27903894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SySAP: a system-level predictor of deleterious single amino acid polymorphisms.
    Huang T; Wang C; Zhang G; Xie L; Li Y
    Protein Cell; 2012 Jan; 3(1):38-43. PubMed ID: 22183811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deleterious nonsynonymous single nucleotide polymorphisms in human solute carriers: the first comparison of three prediction methods.
    Hao DC; Xiao B; Xiang Y; Dong XW; Xiao PG
    Eur J Drug Metab Pharmacokinet; 2013 Mar; 38(1):53-62. PubMed ID: 22555822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information.
    Capriotti E; Calabrese R; Casadio R
    Bioinformatics; 2006 Nov; 22(22):2729-34. PubMed ID: 16895930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening and insilico analysis of deleterious nsSNPs (missense) in human CSF3 for their effects on protein structure, stability and function.
    Guttula PK; Chandrasekaran G; Gupta MK
    Comput Biol Chem; 2019 Oct; 82():57-64. PubMed ID: 31272062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SNPdbe: constructing an nsSNP functional impacts database.
    Schaefer C; Meier A; Rost B; Bromberg Y
    Bioinformatics; 2012 Feb; 28(4):601-2. PubMed ID: 22210871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-neutral nonsynonymous single nucleotide polymorphisms in human ABC transporters: the first comparison of six prediction methods.
    Hao da C; Feng Y; Xiao R; Xiao PG
    Pharmacol Rep; 2011; 63(4):924-34. PubMed ID: 22001980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of computational methods for predicting the effects of missense mutations in human cancers.
    Gnad F; Baucom A; Mukhyala K; Manning G; Zhang Z
    BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S7. PubMed ID: 23819521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.