These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 18757889)
21. Sequence-dependent conformational perturbation in DNA duplexes containing an epsilonA.T mismatch using molecular dynamics simulation. Guliaev AB; Sági J; Singer B Carcinogenesis; 2000 Sep; 21(9):1727-36. PubMed ID: 10964105 [TBL] [Abstract][Full Text] [Related]
22. Hg(II) ion specifically binds with T:T mismatched base pair in duplex DNA. Torigoe H; Ono A; Kozasa T Chemistry; 2010 Nov; 16(44):13218-25. PubMed ID: 20886468 [TBL] [Abstract][Full Text] [Related]
23. Very stable mismatch duplexes: structural and thermodynamic studies on tandem G.A mismatches in DNA. Ebel S; Lane AN; Brown T Biochemistry; 1992 Dec; 31(48):12083-6. PubMed ID: 1457405 [TBL] [Abstract][Full Text] [Related]
24. Repair of A/G and A/8-oxoG mismatches by MutY adenine DNA glycosylase. Lu AL Methods Mol Biol; 2000; 152():3-16. PubMed ID: 10957964 [No Abstract] [Full Text] [Related]
25. DNA polymorphism as an origin of adenine-thymine tract length-dependent threading intercalation rate. Nordell P; Westerlund F; Reymer A; El-Sagheer AH; Brown T; Nordén B; Lincoln P J Am Chem Soc; 2008 Nov; 130(44):14651-8. PubMed ID: 18847262 [TBL] [Abstract][Full Text] [Related]
26. Double-proton transfer in adenine-thymine and guanine-cytosine base pairs. A post-Hartree-Fock ab initio study. Gorb L; Podolyan Y; Dziekonski P; Sokalski WA; Leszczynski J J Am Chem Soc; 2004 Aug; 126(32):10119-29. PubMed ID: 15303888 [TBL] [Abstract][Full Text] [Related]
27. NMR structure of the DNA decamer duplex containing double T*G mismatches of cis-syn cyclobutane pyrimidine dimer: implications for DNA damage recognition by the XPC-hHR23B complex. Lee JH; Park CJ; Shin JS; Ikegami T; Akutsu H; Choi BS Nucleic Acids Res; 2004; 32(8):2474-81. PubMed ID: 15121904 [TBL] [Abstract][Full Text] [Related]
28. Chromophore/DNA interactions: femto- to nanosecond spectroscopy, NMR structure, and electron transfer theory. von Feilitzsch T; Tuma J; Neubauer H; Verdier L; Haselsberger R; Feick R; Gurzadyan G; Voityuk AA; Griesinger C; Michel-Beyerle ME J Phys Chem B; 2008 Jan; 112(3):973-89. PubMed ID: 18163608 [TBL] [Abstract][Full Text] [Related]
29. Detection of single base mismatches and abasic sites using phenanthridinium as an artificial DNA base and charge donor. Valis L; Amann N; Wagenknecht HA Org Biomol Chem; 2005 Jan; 3(1):36-8. PubMed ID: 15602596 [TBL] [Abstract][Full Text] [Related]
30. The nature of the transition mismatches with Watson-Crick architecture: the G*·T or G·T* DNA base mispair or both? A QM/QTAIM perspective for the biological problem. Brovarets' OO; Hovorun DM J Biomol Struct Dyn; 2015; 33(5):925-45. PubMed ID: 24842163 [TBL] [Abstract][Full Text] [Related]
31. New method for scanning of single-nucleotide polymorphisms (SNPs): recognition of guanine-guanine mismatches by dimeric naphthyridine. Sando S; Nakatani K; Saito I Nucleic Acids Symp Ser; 2000; (44):119-20. PubMed ID: 12903297 [TBL] [Abstract][Full Text] [Related]
32. The C-terminal domain of the adenine-DNA glycosylase MutY confers specificity for 8-oxoguanine.adenine mispairs and may have evolved from MutT, an 8-oxo-dGTPase. Noll DM; Gogos A; Granek JA; Clarke ND Biochemistry; 1999 May; 38(20):6374-9. PubMed ID: 10350454 [TBL] [Abstract][Full Text] [Related]
33. Reactivity of ferrocenylcarbodiimide with DNA duplex containing single-mismatched base pairs. Mukumoto K; Watanabe S; Nojima T; Waki M; Takenaka S Anal Sci; 2007 Jun; 23(6):645-9. PubMed ID: 17575345 [TBL] [Abstract][Full Text] [Related]
34. Sequence, structure and energy transfer in DNA. Nordlund TM Photochem Photobiol; 2007; 83(3):625-36. PubMed ID: 17576373 [TBL] [Abstract][Full Text] [Related]
35. Single-base mismatch detection based on charge transduction through DNA. Kelley SO; Boon EM; Barton JK; Jackson NM; Hill MG Nucleic Acids Res; 1999 Dec; 27(24):4830-7. PubMed ID: 10572185 [TBL] [Abstract][Full Text] [Related]
36. Impact of single basepair mismatches on electron-transfer processes at Fc-PNA⋅DNA modified gold surfaces. Hüsken N; Gębala M; Battistel A; La Mantia F; Schuhmann W; Metzler-Nolte N Chemphyschem; 2012 Jan; 13(1):131-9. PubMed ID: 21932268 [TBL] [Abstract][Full Text] [Related]
37. Probing nucleobase mismatch variations by electrochemical techniques: exploring the effects of position and nature of the single-nucleotide mismatch. Shamsi MH; Kraatz HB Analyst; 2010 Sep; 135(9):2280-5. PubMed ID: 20672148 [TBL] [Abstract][Full Text] [Related]
38. Mismatch base pair detection by fluorescence spectral change upon addition of metal cation--toward efficient analysis of single nucleotide polymorphism. Torigoe H; Ono A; Kozasa T Nucleosides Nucleotides Nucleic Acids; 2007; 26(10-12):1635-9. PubMed ID: 18066842 [TBL] [Abstract][Full Text] [Related]
39. Initiation of strand incision at G:T and O(6)-methylguanine:T base mismatches in DNA by human cell extracts. Lari SU; Day RS; Dobler K; Paterson MC Nucleic Acids Res; 2001 Jun; 29(11):2409-17. PubMed ID: 11376160 [TBL] [Abstract][Full Text] [Related]
40. Electrochemical detection of single-base mismatches in DNA by a redox-active intercalator conjugated oligonucleotide. Yamana K; Kawakami N; Ohtsuka T; Sugie Y; Nakano H; Saito I Nucleic Acids Res Suppl; 2003; (3):89-90. PubMed ID: 14510394 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]