These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 18757892)

  • 1. Phylogenetic analysis of mRNA polyadenylation sites reveals a role of transposable elements in evolution of the 3'-end of genes.
    Lee JY; Ji Z; Tian B
    Nucleic Acids Res; 2008 Oct; 36(17):5581-90. PubMed ID: 18757892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome level analysis of rice mRNA 3'-end processing signals and alternative polyadenylation.
    Shen Y; Ji G; Haas BJ; Wu X; Zheng J; Reese GJ; Li QQ
    Nucleic Acids Res; 2008 May; 36(9):3150-61. PubMed ID: 18411206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Knock-down of 25 kDa subunit of cleavage factor Im in Hela cells alters alternative polyadenylation within 3'-UTRs.
    Kubo T; Wada T; Yamaguchi Y; Shimizu A; Handa H
    Nucleic Acids Res; 2006; 34(21):6264-71. PubMed ID: 17098938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PolyA_DB 2: mRNA polyadenylation sites in vertebrate genes.
    Lee JY; Yeh I; Park JY; Tian B
    Nucleic Acids Res; 2007 Jan; 35(Database issue):D165-8. PubMed ID: 17202160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conservation of alternative polyadenylation patterns in mammalian genes.
    Ara T; Lopez F; Ritchie W; Benech P; Gautheret D
    BMC Genomics; 2006 Jul; 7():189. PubMed ID: 16872498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A compendium of conserved cleavage and polyadenylation events in mammalian genes.
    Wang R; Zheng D; Yehia G; Tian B
    Genome Res; 2018 Oct; 28(10):1427-1441. PubMed ID: 30143597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beyond the 3' end: experimental validation of extended transcript isoforms.
    Moucadel V; Lopez F; Ara T; Benech P; Gautheret D
    Nucleic Acids Res; 2007; 35(6):1947-57. PubMed ID: 17339231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transposable elements in disease-associated cryptic exons.
    Vorechovsky I
    Hum Genet; 2010 Feb; 127(2):135-54. PubMed ID: 19823873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Widespread mRNA polyadenylation events in introns indicate dynamic interplay between polyadenylation and splicing.
    Tian B; Pan Z; Lee JY
    Genome Res; 2007 Feb; 17(2):156-65. PubMed ID: 17210931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale discovery of insertion hotspots and preferential integration sites of human transposed elements.
    Levy A; Schwartz S; Ast G
    Nucleic Acids Res; 2010 Mar; 38(5):1515-30. PubMed ID: 20008508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional microRNAs and target sites are created by lineage-specific transposition.
    Spengler RM; Oakley CK; Davidson BL
    Hum Mol Genet; 2014 Apr; 23(7):1783-93. PubMed ID: 24234653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence determinants in human polyadenylation site selection.
    Legendre M; Gautheret D
    BMC Genomics; 2003 Feb; 4(1):7. PubMed ID: 12600277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upstream elements present in the 3'-untranslated region of collagen genes influence the processing efficiency of overlapping polyadenylation signals.
    Natalizio BJ; Muniz LC; Arhin GK; Wilusz J; Lutz CS
    J Biol Chem; 2002 Nov; 277(45):42733-40. PubMed ID: 12200454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Huntingtin gene evolution in Chordata and its peculiar features in the ascidian Ciona genus.
    Gissi C; Pesole G; Cattaneo E; Tartari M
    BMC Genomics; 2006 Nov; 7():288. PubMed ID: 17092333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and evolution of 5' and 3' untranslated regions in eukaryotes.
    Liu H; Yin J; Xiao M; Gao C; Mason AS; Zhao Z; Liu Y; Li J; Fu D
    Gene; 2012 Oct; 507(2):106-11. PubMed ID: 22846368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alu exaptation enriches the human transcriptome by introducing new gene ends.
    Lavi E; Carmel L
    RNA Biol; 2018; 15(6):715-725. PubMed ID: 29493382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenetic analysis of Hoxa 11 sequences reveals absence of transposable elements, conservation of transcription factor binding sites, and suggests antisense coding function.
    Bodenmiller DM; Baxter CS; Hansen DV; Potter SS
    DNA Seq; 2002 Apr; 13(2):77-83. PubMed ID: 12180349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extensive alternative polyadenylation during zebrafish development.
    Ulitsky I; Shkumatava A; Jan CH; Subtelny AO; Koppstein D; Bell GW; Sive H; Bartel DP
    Genome Res; 2012 Oct; 22(10):2054-66. PubMed ID: 22722342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sense-oriented AluYRa1 elements provide a lineage-specific transcription environment for polyadenylation.
    Cho HM; Choe SH; Kim YH; Park HR; Lee HE; Lee JR; Park SJ; Huh JW
    Sci Rep; 2021 Feb; 11(1):3665. PubMed ID: 33574427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The human albumin gene. Characterization of the 5' and 3' flanking regions and the polymorphic gene transcripts.
    Urano Y; Watanabe K; Sakai M; Tamaoki T
    J Biol Chem; 1986 Mar; 261(7):3244-51. PubMed ID: 2419329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.