BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 18758170)

  • 21. Evolution of ancient satellite DNAs in sturgeon genomes.
    Robles F; de la Herrán R; Ludwig A; Ruiz Rejón C; Ruiz Rejón M; Garrido-Ramos MA
    Gene; 2004 Aug; 338(1):133-42. PubMed ID: 15302414
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The utility of SATA satellite DNA sequences for inferring phylogenetic relationships among the three major genera of tilapiine cichlid fishes.
    Franck JP; Kornfield I; Wright JM
    Mol Phylogenet Evol; 1994 Mar; 3(1):10-6. PubMed ID: 7545936
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Centromeric Satellite DNA in Flatfish (Order Pleuronectiformes) and Its Relation to Speciation Processes.
    Rodríguez FR; de la Herrán R; Navajas-Pérez R; Cano-Roldán B; Sola-Campoy PJ; García-Zea JA; Rejón CR
    J Hered; 2017 Mar; 108(2):217-222. PubMed ID: 28173078
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification and characterization of genomic nucleosome-positioning sequences.
    Widlund HR; Cao H; Simonsson S; Magnusson E; Simonsson T; Nielsen PE; Kahn JD; Crothers DM; Kubista M
    J Mol Biol; 1997 Apr; 267(4):807-17. PubMed ID: 9135113
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mouse telocentric sequences reveal a high rate of homogenization and possible role in Robertsonian translocation.
    Kalitsis P; Griffiths B; Choo KH
    Proc Natl Acad Sci U S A; 2006 Jun; 103(23):8786-91. PubMed ID: 16731628
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolutionary dynamics of satellite DNA in species of the Genus Formica (Hymenoptera, Formicidae).
    Lorite P; Carrillo JA; Tinaut A; Palomeque T
    Gene; 2004 May; 332():159-68. PubMed ID: 15145065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular characterization of a centromeric satellite DNA in the hemiclonal hybrid frog Rana esculenta and its parental species.
    Ragghianti M; Guerrini F; Bucci S; Mancino G; Hotz H; Uzzell T; Guex GD
    Chromosome Res; 1995 Dec; 3(8):497-506. PubMed ID: 8581303
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolation and characterization of a satellite DNA family in Achirus lineatus (Teleostei: Pleuronectiformes: Achiridae).
    Carvalho de Azevedo MF; Oliveira C; Martins C; Pinto Wasko A; Foresti F
    Genetica; 2005 Nov; 125(2-3):205-10. PubMed ID: 16247692
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation, cloning and characterization of two major satellite DNA families of rabbit (Oryctolagus cuniculus).
    Ekes C; Csonka E; Hadlaczky G; Cserpán I
    Gene; 2004 Dec; 343(2):271-9. PubMed ID: 15588582
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The first characterisation of the overall variability of repetitive units in a species reveals unexpected features of satellite DNA.
    Feliciello I; Picariello O; Chinali G
    Gene; 2005 Apr; 349():153-64. PubMed ID: 15777738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Key-string algorithm--novel approach to computational analysis of repetitive sequences in human centromeric DNA.
    Rosandić M; Paar V; Gluncić M; Basar I; Pavin N
    Croat Med J; 2003 Aug; 44(4):386-406. PubMed ID: 12950141
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cloning and characterization of a fish centromeric satellite DNA.
    Garrido-Ramos MA; Jamilena M; Lozano R; Ruiz Rejón C; Ruiz Rejón M
    Cytogenet Cell Genet; 1994; 65(4):233-7. PubMed ID: 8258296
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Padlock probes reveal single-nucleotide differences, parent of origin and in situ distribution of centromeric sequences in human chromosomes 13 and 21.
    Nilsson M; Krejci K; Koch J; Kwiatkowski M; Gustavsson P; Landegren U
    Nat Genet; 1997 Jul; 16(3):252-5. PubMed ID: 9207789
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcription and evolutionary dynamics of the centromeric satellite repeat CentO in rice.
    Lee HR; Neumann P; Macas J; Jiang J
    Mol Biol Evol; 2006 Dec; 23(12):2505-20. PubMed ID: 16987952
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolution of the centromeric alpha-satellite DNA sequences of human chromosome 22.
    Verma RS
    Prenat Diagn; 1999 Jun; 19(6):590-1. PubMed ID: 10416981
    [No Abstract]   [Full Text] [Related]  

  • 36. An alphoid-like satellite DNA sequence is present in the genome of a lacertid lizard.
    Capriglione T; De Santo MG; Odierna G; Olmo E
    J Mol Evol; 1998 Feb; 46(2):240-4. PubMed ID: 9452526
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Global sequence characterization of rice centromeric satellite based on oligomer frequency analysis in large-scale sequencing data.
    Macas J; Neumann P; Novák P; Jiang J
    Bioinformatics; 2010 Sep; 26(17):2101-8. PubMed ID: 20616383
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A clade of New World primates with distinctive alphoid satellite DNAs.
    Alves G; Seuánez HN; Fanning T
    Mol Phylogenet Evol; 1998 Apr; 9(2):220-4. PubMed ID: 9562981
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [The molecular cloning of mouse centromeric DNA (SFA-DNA)].
    Sang YJ; Mo XQ; Ni ZM; Shi LJ
    Shi Yan Sheng Wu Xue Bao; 1995 Dec; 28(4):409-13. PubMed ID: 8731972
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sequence-specific physical properties of African green monkey alpha-satellite DNA contribute to centromeric heterochromatin formation.
    Bussiek M; Hoischen C; Diekmann S; Bennink ML
    J Struct Biol; 2009 Jul; 167(1):36-46. PubMed ID: 19332128
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.