These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 18758457)
21. Application of atomic Hirshfeld surface analysis to intermetallic systems: is Mn in cubic CeMnNi4 a thermoelectric rattler atom? Jørgensen MR; Skovsen I; Clausen HF; Mi JL; Christensen M; Nishibori E; Spackman MA; Iversen BB Inorg Chem; 2012 Feb; 51(3):1916-24. PubMed ID: 22264092 [TBL] [Abstract][Full Text] [Related]
22. Thermal Expansion and Rattling Behavior of Gd-Filled Co Rodrigues JEFS; Gainza J; Serrano-Sánchez F; Silva RS; Dejoie C; Nemes NM; Dura OJ; Martínez JL; Alonso JA Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614710 [TBL] [Abstract][Full Text] [Related]
23. Structure Optimization and Multi-frequency Phonon Scattering Boosting Thermoelectrics in Self-Doped CoSb Rao X; Zhong Y; Feng H; Wang Y; Tan X; Zhu J; Ang R ACS Appl Mater Interfaces; 2023 Feb; 15(4):5301-5308. PubMed ID: 36662503 [TBL] [Abstract][Full Text] [Related]
24. Structural order-disorder transitions and phonon conductivity of partially filled skutterudites. Kim H; Kaviany M; Thomas JC; Van der Ven A; Uher C; Huang B Phys Rev Lett; 2010 Dec; 105(26):265901. PubMed ID: 21231682 [TBL] [Abstract][Full Text] [Related]
25. Resonant oscillation of misch-metal atoms in filled skutterudites. Wang Y; Xu X; Yang J Phys Rev Lett; 2009 May; 102(17):175508. PubMed ID: 19518798 [TBL] [Abstract][Full Text] [Related]
26. Compositional dependence of the thermoelectric properties of (Sr(x)Ba(x)Yb₁₋₂x)(y)Co₄Sb₁₂ skutterudites. Rogl G; Grytsiv A; Melnychenko-Koblyuk N; Bauer E; Laumann S; Rogl P J Phys Condens Matter; 2011 Jul; 23(27):275601. PubMed ID: 21685555 [TBL] [Abstract][Full Text] [Related]
27. Retreat from Stress: Rattling in a Planar Coordination. Suekuni K; Lee CH; Tanaka HI; Nishibori E; Nakamura A; Kasai H; Mori H; Usui H; Ochi M; Hasegawa T; Nakamura M; Ohira-Kawamura S; Kikuchi T; Kaneko K; Nishiate H; Hashikuni K; Kosaka Y; Kuroki K; Takabatake T Adv Mater; 2018 Mar; 30(13):e1706230. PubMed ID: 29388262 [TBL] [Abstract][Full Text] [Related]
28. Effect of Refractory Tantalum Metal Filling on the Microstructure and Thermoelectric Properties of Co Trivedi V; Battabyal M; Perumal S; Chauhan A; Satapathy DK; Murty BS; Gopalan R ACS Omega; 2021 Feb; 6(5):3900-3909. PubMed ID: 33585769 [TBL] [Abstract][Full Text] [Related]
29. Dispersion of Multi-Walled Carbon Nanotubes in Skutterudites and Its Effect on Thermoelectric and Mechanical Properties. Schmitz A; Schmid C; de Boor J; Müller E J Nanosci Nanotechnol; 2017 Mar; 17(3):1547-554. PubMed ID: 29693339 [TBL] [Abstract][Full Text] [Related]
31. Raising the Thermoelectric Performance of Fe3CoSb12 Skutterudites via Nd Filling and In-Situ Nanostructuring. Guo L; Cai Z; Xu X; Peng K; Wang G; Wang G; Zhou X J Nanosci Nanotechnol; 2016 Apr; 16(4):3841-7. PubMed ID: 27451721 [TBL] [Abstract][Full Text] [Related]
32. Probing the lower limit of lattice thermal conductivity in an ordered extended solid: Gd117Co56Sn112, a phonon glass-electron crystal system. Schmitt DC; Haldolaarachchige N; Xiong Y; Young DP; Jin R; Chan JY J Am Chem Soc; 2012 Apr; 134(13):5965-73. PubMed ID: 22375963 [TBL] [Abstract][Full Text] [Related]
33. Thermal transport in thermoelectric materials with chemical bond hierarchy. Yang J; Wang Y; Yang H; Tang W; Yang J; Chen L; Zhang W J Phys Condens Matter; 2019 May; 31(18):183002. PubMed ID: 30703759 [TBL] [Abstract][Full Text] [Related]
34. Nanostructures versus solid solutions: low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb0.2Te10-xSex bulk materials. Poudeu PF; D'Angelo J; Kong H; Downey A; Short JL; Pcionek R; Hogan TP; Uher C; Kanatzidis MG J Am Chem Soc; 2006 Nov; 128(44):14347-55. PubMed ID: 17076508 [TBL] [Abstract][Full Text] [Related]
35. Enhanced thermoelectric performance in barium and indium double-filled skutterudite bulk materials via orbital hybridization induced by indium filler. Zhao W; Wei P; Zhang Q; Dong C; Liu L; Tang X J Am Chem Soc; 2009 Mar; 131(10):3713-20. PubMed ID: 19245204 [TBL] [Abstract][Full Text] [Related]
36. Quartic Anharmonicity of Rattlers and Its Effect on Lattice Thermal Conductivity of Clathrates from First Principles. Tadano T; Tsuneyuki S Phys Rev Lett; 2018 Mar; 120(10):105901. PubMed ID: 29570340 [TBL] [Abstract][Full Text] [Related]
37. Thermal expansivity of tetrahydrofuran clathrate hydrate with diatomic guest molecules. Park Y; Choi YN; Yeon SH; Lee H J Phys Chem B; 2008 Jun; 112(23):6897-9. PubMed ID: 18489143 [TBL] [Abstract][Full Text] [Related]
38. On the origin of increased phonon scattering in nanostructured PbTe based thermoelectric materials. He J; Sootsman JR; Girard SN; Zheng JC; Wen J; Zhu Y; Kanatzidis MG; Dravid VP J Am Chem Soc; 2010 Jun; 132(25):8669-75. PubMed ID: 20524606 [TBL] [Abstract][Full Text] [Related]
39. Origin of Ultralow Thermal Conductivity in Metal Halide Perovskites. Thakur S; Giri A ACS Appl Mater Interfaces; 2023 Jun; 15(22):26755-26765. PubMed ID: 37235795 [TBL] [Abstract][Full Text] [Related]
40. Intrinsic Rattler-Induced Low Thermal Conductivity in Zintl Type TlInTe Jana MK; Pal K; Warankar A; Mandal P; Waghmare UV; Biswas K J Am Chem Soc; 2017 Mar; 139(12):4350-4353. PubMed ID: 28263613 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]