These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 18758508)

  • 61. Double-pulse magnetic brain stem stimulation: mimicking successive descending volleys.
    Matsumoto H; Hanajima R; Hamada M; Terao Y; Yugeta A; Inomata-Terada S; Nakatani-Enomoto S; Tsuji S; Ugawa Y
    J Neurophysiol; 2008 Dec; 100(6):3437-44. PubMed ID: 18922947
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Methods and clinical value of peripheral nerve refractory period measurement in man].
    Boërio D; Hogrel JY; Créange A; Lefaucheur JP
    Neurophysiol Clin; 2004 Dec; 34(6):279-91. PubMed ID: 15890161
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Stimulation threshold comparison of time-varying magnetic pulses with different waveforms.
    Irnich W; Hebrank FX
    J Magn Reson Imaging; 2009 Jan; 29(1):229-36. PubMed ID: 19097100
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Yield of the sural/radial ratio versus the medial plantar nerve in sensory neuropathies with a normal sural response.
    Sullivan JP; Logigian EL; Kocharian N; Herrmann DN
    J Clin Neurophysiol; 2008 Apr; 25(2):111-4. PubMed ID: 18340276
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The NerveSeeker: a system for automated nerve localization.
    Raymond SA; Abrams SB; Raemer DB; Philip JH; Strichartz GR
    Reg Anesth; 1992; 17(3):151-62. PubMed ID: 1606098
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Design and testing of an instrumentation system to reduce stimulus pulse amplitude requirements during FES.
    Willand MP; de Bruin H
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2764-7. PubMed ID: 19163278
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Axonal excitability in the forearm: normal data and differences along the median nerve.
    Jankelowitz SK; Burke D
    Clin Neurophysiol; 2009 Jan; 120(1):167-73. PubMed ID: 19028441
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Summation of excitatory postsynaptic potentials in electrically-coupled neurones.
    Vazquez Y; Mendez B; Trueta C; De-Miguel FF
    Neuroscience; 2009 Sep; 163(1):202-12. PubMed ID: 19501633
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Differences in excitability properties of FDI and ADM motor axons.
    Bae JS; Sawai S; Misawa S; Kanai K; Isose S; Kuwabara S
    Muscle Nerve; 2009 Mar; 39(3):350-4. PubMed ID: 19208410
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Excitation patterns of simultaneous and sequential dual-electrode stimulation in cochlear implant recipients.
    Saoji AA; Litvak LM; Hughes ML
    Ear Hear; 2009 Oct; 30(5):559-67. PubMed ID: 19617837
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Vestibular evoked myogenic potentials in response to lateral skull taps are dependent on two different mechanisms.
    Brantberg K; Westin M; Löfqvist L; Verrecchia L; Tribukait A
    Clin Neurophysiol; 2009 May; 120(5):974-9. PubMed ID: 19376744
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fundamental electrophysiologic investigation of spinal cord: refractory period of feline conductive spinal cord evoked potential.
    Ishikawa M; Yamaguchi N; Bertalanffy H; Tamura K; Ohira T; Takase M; Kawase T
    J Clin Neurophysiol; 1997 Jul; 14(4):335-44. PubMed ID: 9337143
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Stimulus-dependent refractoriness in the Frankenhaeuser-Huxley model.
    Morse RP; Allingham D; Stocks NG
    J Theor Biol; 2015 Oct; 382():397-404. PubMed ID: 26187096
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Evaluation of a novel, noninvasive, objective test of auditory nerve function in cochlear implant candidates.
    Gräbel S; Hirschfelder A; Scheiber C; Olze H
    Otol Neurotol; 2009 Sep; 30(6):716-24. PubMed ID: 19704358
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Intracellular responses of neurons in the mouse inferior colliculus to sinusoidal amplitude-modulated tones.
    Geis HR; Borst JG
    J Neurophysiol; 2009 Apr; 101(4):2002-16. PubMed ID: 19193772
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effect of perinatal food deficiencies on the compound action potential evoked in sensory nerves of developing rats.
    Segura B; Guadarrama JC; Gutierrez AL; Merchant H; Cintra L; Jiménez I
    Nutr Neurosci; 2001; 4(6):475-88. PubMed ID: 11843267
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Reproducible measurement of human motoneuron excitability with magnetic stimulation of the corticospinal tract.
    Martin PG; Hudson AL; Gandevia SC; Taylor JL
    J Neurophysiol; 2009 Jul; 102(1):606-13. PubMed ID: 19403741
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Electrical and magnetic repetitive transcranial stimulation of the primary motor cortex in healthy subjects.
    Gilio F; Iacovelli E; Frasca V; Gabriele M; Giacomelli E; De Lena C; Cipriani AM; Inghilleri M
    Neurosci Lett; 2009 May; 455(1):1-3. PubMed ID: 19429094
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Short-term electrophysiological conduction change in median nerve fibres after carpal tunnel release.
    Ginanneschi F; Milani P; Reale F; Rossi A
    Clin Neurol Neurosurg; 2008 Dec; 110(10):1025-30. PubMed ID: 18845386
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Practical model description of peripheral neural excitation in cochlear implant recipients: 1. Growth of loudness and ECAP amplitude with current.
    Cohen LT
    Hear Res; 2009 Jan; 247(2):87-99. PubMed ID: 19063956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.