BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 18758792)

  • 1. Histological and biomechanical study of impacted cancellous allografts with cement in the femur: a canine model.
    Omoto O; Yasunaga Y; Adachi N; Deie M; Ochi M
    Arch Orthop Trauma Surg; 2008 Dec; 128(12):1357-64. PubMed ID: 18758792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revision total hip arthroplasty in the deficient femur with a proximal load-bearing prosthesis.
    Head WC; Wagner RA; Emerson RH; Malinin TI
    Clin Orthop Relat Res; 1994 Jan; (298):119-26. PubMed ID: 8118966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histological findings of the femoral bone after cement removal in hip revision. An experimental study of cadaver femurs with two different cement removal procedures.
    Porsch M; Schmidt J
    Arch Orthop Trauma Surg; 2003 Jun; 123(5):199-202. PubMed ID: 12743715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological and mechanical changes of the bone graft-cement interface after impaction allografting.
    Frei H; O'Connell J; Masri BA; Duncan CP; Oxland TR
    J Orthop Res; 2005 Nov; 23(6):1271-9. PubMed ID: 15964167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural characteristics of impaction allografting for revision total hip arthroplasty.
    Robinson MC; Fernlund G; Dominic Meek RM; Masri BA; Duncan CP; Oxland TR
    Clin Biomech (Bristol, Avon); 2005 Oct; 20(8):853-5. PubMed ID: 16023774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cancellous and cortical morselized allograft in revision total hip replacement: A biomechanical study of implant stability.
    Kligman M; Rotem A; Roffman M
    J Biomech; 2003 Jun; 36(6):797-802. PubMed ID: 12742447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The morselized and impacted bone graft. Animal experiments on proteins, impaction and load.
    Tägil M
    Acta Orthop Scand Suppl; 2000 Feb; 290():1-40. PubMed ID: 10745934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone allograft and implant fixation tested under influence of bio-burden reduction, periosteal augmentation and topical antibiotics. Animal experimental studies.
    Barckman J
    Dan Med J; 2014 Jan; 61(1):B4720. PubMed ID: 24393592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone remodeling after impacted cancellous allograft in revision hip arthroplasty based on (99m)Tc-MDP bone scintigraphy.
    Hisatome T; Yasunaga Y; Takahashi K; Ochi M
    Arch Orthop Trauma Surg; 2004 Jan; 124(1):52-5. PubMed ID: 14605826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaction bone grafting with hydroxyapatite: increased femoral component stability in experiments using Sawbones.
    Fujishiro T; Nishikawa T; Niikura T; Takikawa S; Nishiyama T; Mizuno K; Yoshiya S; Kurosaka M
    Acta Orthop; 2005 Aug; 76(4):550-4. PubMed ID: 16195073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid bone and blood flow formation in impacted morselized allografts: positron emission tomography (PET) studies on allografts in 5 femoral component revisions of total hip arthroplasty.
    Sörensen J; Ullmark G; Långström B; Nilsson O
    Acta Orthop Scand; 2003 Dec; 74(6):633-43. PubMed ID: 14763691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The response of cancellous and cortical canine bone to hydroxylapatite-coated and uncoated titanium rods.
    Rashmir-Raven AM; Richardson DC; Aberman HM; DeYoung DJ
    J Appl Biomater; 1995; 6(4):237-42. PubMed ID: 8589508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Femoral stem impaction grafting: extending the role of cement.
    Gehrke T; Gebauer M; Kendoff D
    Bone Joint J; 2013 Nov; 95-B(11 Suppl A):92-4. PubMed ID: 24187362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adjuvant therapies of bone graft around non-cemented experimental orthopedic implants stereological methods and experiments in dogs.
    Baas J
    Acta Orthop Suppl; 2008 Aug; 79(330):1-43. PubMed ID: 19065776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical characteristics of the bone-graft-cement interface after impaction allografting.
    Frei H; Mitchell P; Masri BA; Duncan CP; Oxland TR
    J Orthop Res; 2005 Jan; 23(1):9-17. PubMed ID: 15607869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. No positive effects of OP-1 device on the incorporation of impacted graft materials after 8 weeks: a bone chamber study in goats.
    Hannink G; Schreurs BW; Buma P
    Acta Orthop; 2007 Aug; 78(4):551-8. PubMed ID: 17966011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intramedullary step-cut osteotomy for revision total hip arthroplasty with allograft-host bone size mismatch.
    Maclachlan CE; Ries MD
    J Arthroplasty; 2007 Aug; 22(5):657-62. PubMed ID: 17689772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability of proximal femoral grafts in canine hip arthroplasty.
    Heiner JP; Kohles SS; Manley PA; Vanderby R; Markel MD
    Clin Orthop Relat Res; 1997 Aug; (341):233-40. PubMed ID: 9269179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term follow-up study of bioactive bone cement for repairing a segmental defect in a canine femur.
    Fujibayashi S; Senaha Y; Yoshihara S; Tamura J; Nakamura T
    J Long Term Eff Med Implants; 2001; 11(1-2):93-103. PubMed ID: 11495108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of three methods of gluteal muscle attachment to an allograft/endoprosthetic composite in a canine model.
    Pluhar GE; Heiner JP; Manley PA; Bogdanske JJ; Vanderby R; Markel MD
    J Orthop Res; 2000 Jan; 18(1):56-63. PubMed ID: 10716279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.