BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 18759009)

  • 1. Molecular bases of caloric restriction regulation of neuronal synaptic plasticity.
    Fontán-Lozano A; López-Lluch G; Delgado-García JM; Navas P; Carrión AM
    Mol Neurobiol; 2008 Oct; 38(2):167-77. PubMed ID: 18759009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meal size and frequency affect neuronal plasticity and vulnerability to disease: cellular and molecular mechanisms.
    Mattson MP; Duan W; Guo Z
    J Neurochem; 2003 Feb; 84(3):417-31. PubMed ID: 12558961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caloric restriction and brain function.
    Gillette-Guyonnet S; Vellas B
    Curr Opin Clin Nutr Metab Care; 2008 Nov; 11(6):686-92. PubMed ID: 18827571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomics analysis provides insight into caloric restriction mediated oxidation and expression of brain proteins associated with age-related impaired cellular processes: Mitochondrial dysfunction, glutamate dysregulation and impaired protein synthesis.
    Poon HF; Shepherd HM; Reed TT; Calabrese V; Stella AM; Pennisi G; Cai J; Pierce WM; Klein JB; Butterfield DA
    Neurobiol Aging; 2006 Jul; 27(7):1020-34. PubMed ID: 15996793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetics and oxidative stress in synaptic plasticity and neurodegenerative disorders.
    Mattson MP; Liu D
    Neuromolecular Med; 2002; 2(2):215-31. PubMed ID: 12428812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caloric restriction increases learning consolidation and facilitates synaptic plasticity through mechanisms dependent on NR2B subunits of the NMDA receptor.
    Fontán-Lozano A; Sáez-Cassanelli JL; Inda MC; de los Santos-Arteaga M; Sierra-Domínguez SA; López-Lluch G; Delgado-García JM; Carrión AM
    J Neurosci; 2007 Sep; 27(38):10185-95. PubMed ID: 17881524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caloric restriction and intermittent fasting: two potential diets for successful brain aging.
    Martin B; Mattson MP; Maudsley S
    Ageing Res Rev; 2006 Aug; 5(3):332-53. PubMed ID: 16899414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Astrocytes as Perspective Targets of Exercise- and Caloric Restriction-Mimetics.
    Lalo U; Pankratov Y
    Neurochem Res; 2021 Oct; 46(10):2746-2759. PubMed ID: 33677759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal dysfunction with aging and its amelioration.
    Ando S
    Proc Jpn Acad Ser B Phys Biol Sci; 2012; 88(6):266-82. PubMed ID: 22728441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of diet on brain plasticity in animal and human studies: mind the gap.
    Murphy T; Dias GP; Thuret S
    Neural Plast; 2014; 2014():563160. PubMed ID: 24900924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging Concepts and Functions of Autophagy as a Regulator of Synaptic Components and Plasticity.
    Liang Y
    Cells; 2019 Jan; 8(1):. PubMed ID: 30634508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondria and Synaptic Plasticity in the Mature and Aging Nervous System.
    Todorova V; Blokland A
    Curr Neuropharmacol; 2017; 15(1):166-173. PubMed ID: 27075203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance.
    Raefsky SM; Mattson MP
    Free Radic Biol Med; 2017 Jan; 102():203-216. PubMed ID: 27908782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caloric restriction and age affect synaptic proteins in hippocampal CA3 and spatial learning ability.
    Adams MM; Shi L; Linville MC; Forbes ME; Long AB; Bennett C; Newton IG; Carter CS; Sonntag WE; Riddle DR; Brunso-Bechtold JK
    Exp Neurol; 2008 May; 211(1):141-9. PubMed ID: 18342310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of age-related learning and memory capacity of mice: different effects of a high and low caloric diet.
    Dong W; Wang R; Ma LN; Xu BL; Zhang JS; Zhao ZW; Wang YL; Zhang X
    Aging Clin Exp Res; 2016 Apr; 28(2):303-11. PubMed ID: 26138818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of caloric restriction on myenteric neuroplasticity in the rat duodenum during aging.
    da Silva Porto G; Bertaglia Pereira JN; Tibúrcio VG; Stabille SR; Garcia de Faria H; de Melo Germano R; de Britto Mari R
    Auton Neurosci; 2012 May; 168(1-2):43-7. PubMed ID: 22341588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial potassium channels and uncoupling proteins in synaptic plasticity and neuronal cell death.
    Mattson MP; Liu D
    Biochem Biophys Res Commun; 2003 May; 304(3):539-49. PubMed ID: 12729589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased neuronal excitability, synaptic plasticity, and learning in aged Kvbeta1.1 knockout mice.
    Murphy GG; Fedorov NB; Giese KP; Ohno M; Friedman E; Chen R; Silva AJ
    Curr Biol; 2004 Nov; 14(21):1907-15. PubMed ID: 15530391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial support and local translation of mitochondrial proteins in synaptic plasticity and function.
    Liang Y
    Histol Histopathol; 2021 Oct; 36(10):1007-1019. PubMed ID: 34032272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of intrinsic excitability: Roles for learning and memory, aging and Alzheimer's disease, and genetic diversity.
    Dunn AR; Kaczorowski CC
    Neurobiol Learn Mem; 2019 Oct; 164():107069. PubMed ID: 31442579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.