These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 18759676)

  • 1. Screening for 3D environments that support human mesenchymal stem cell viability using hydrogel arrays.
    Jongpaiboonkit L; King WJ; Murphy WL
    Tissue Eng Part A; 2009 Feb; 15(2):343-53. PubMed ID: 18759676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of FGF2 and PEG hydrogel matrix properties on hMSC viability and spreading.
    King WJ; Jongpaiboonkit L; Murphy WL
    J Biomed Mater Res A; 2010 Jun; 93(3):1110-23. PubMed ID: 19768790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An approach to modulate degradation and mesenchymal stem cell behavior in poly(ethylene glycol) networks.
    Hudalla GA; Eng TS; Murphy WL
    Biomacromolecules; 2008 Mar; 9(3):842-9. PubMed ID: 18288800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesenchymal stem cells and ligand incorporation in biomimetic poly(ethylene glycol) hydrogels significantly improve insulin secretion from pancreatic islets.
    Bal T; Nazli C; Okcu A; Duruksu G; Karaöz E; Kizilel S
    J Tissue Eng Regen Med; 2017 Mar; 11(3):694-703. PubMed ID: 25393526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay between degradability and integrin signaling on mesenchymal stem cell function within poly(ethylene glycol) based microporous annealed particle hydrogels.
    Xin S; Gregory CA; Alge DL
    Acta Biomater; 2020 Jan; 101():227-236. PubMed ID: 31711899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Issues of ligand accessibility and mobility in initial cell attachment.
    Thid D; Bally M; Holm K; Chessari S; Tosatti S; Textor M; Gold J
    Langmuir; 2007 Nov; 23(23):11693-704. PubMed ID: 17918863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An adaptable hydrogel array format for 3-dimensional cell culture and analysis.
    Jongpaiboonkit L; King WJ; Lyons GE; Paguirigan AL; Warrick JW; Beebe DJ; Murphy WL
    Biomaterials; 2008 Aug; 29(23):3346-56. PubMed ID: 18486205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogel arrays formed via differential wettability patterning enable combinatorial screening of stem cell behavior.
    Le NNT; Zorn S; Schmitt SK; Gopalan P; Murphy WL
    Acta Biomater; 2016 Apr; 34():93-103. PubMed ID: 26386315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of the adhesion of fibroblasts by peptide containing an Arg-Gly-Asp sequence with poly(ethylene glycol) into a thermo-reversible hydrogel as a synthetic extracellular matrix.
    Park KH; Na K; Chung HM
    Biotechnol Lett; 2005 Feb; 27(4):227-31. PubMed ID: 15742141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GFOGER-modified MMP-sensitive polyethylene glycol hydrogels induce chondrogenic differentiation of human mesenchymal stem cells.
    Mhanna R; Öztürk E; Vallmajo-Martin Q; Millan C; Müller M; Zenobi-Wong M
    Tissue Eng Part A; 2014 Apr; 20(7-8):1165-74. PubMed ID: 24134736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short laminin peptide for improved neural stem cell growth.
    Li X; Liu X; Josey B; Chou CJ; Tan Y; Zhang N; Wen X
    Stem Cells Transl Med; 2014 May; 3(5):662-70. PubMed ID: 24692587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical stabilization of proteolytically degradable polyethylene glycol dimethacrylate hydrogels through peptide interaction.
    Lim HJ; Khan Z; Lu X; Perera TH; Wilems TS; Ravivarapu KT; Smith Callahan LA
    Acta Biomater; 2018 Apr; 71():271-278. PubMed ID: 29526829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attachment and spatial organisation of human mesenchymal stem cells on poly(ethylene glycol) hydrogels.
    Chahal AS; Schweikle M; Heyward CA; Tiainen H
    J Mech Behav Biomed Mater; 2018 Aug; 84():46-53. PubMed ID: 29734041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of ethylene glycol methacrylate phosphate in PEG hydrogels on mineralization and viability of encapsulated hMSCs.
    Nuttelman CR; Benoit DS; Tripodi MC; Anseth KS
    Biomaterials; 2006 Mar; 27(8):1377-86. PubMed ID: 16139351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of cell-adhesive peptide ligands on poly(ethylene glycol) hydrogel physical, mechanical and transport properties.
    Zustiak SP; Durbal R; Leach JB
    Acta Biomater; 2010 Sep; 6(9):3404-14. PubMed ID: 20385260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-mediated degradation regulates human mesenchymal stem cell chondrogenesis and hypertrophy in MMP-sensitive hyaluronic acid hydrogels.
    Feng Q; Zhu M; Wei K; Bian L
    PLoS One; 2014; 9(6):e99587. PubMed ID: 24911871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of the RGD peptide motif and its contextual presentation in PEG gels on human mesenchymal stem cell viability.
    Salinas CN; Anseth KS
    J Tissue Eng Regen Med; 2008 Jul; 2(5):296-304. PubMed ID: 18512265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of peptide-functionalized synthetic hydrogel microarrays for stem cell and tissue engineering applications.
    Jia J; Coyle RC; Richards DJ; Berry CL; Barrs RW; Biggs J; James Chou C; Trusk TC; Mei Y
    Acta Biomater; 2016 Nov; 45():110-120. PubMed ID: 27612960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modifying decellularized aortic valve scaffolds with stromal cell-derived factor-1α loaded proteolytically degradable hydrogel for recellularization and remodeling.
    Dai J; Qiao W; Shi J; Liu C; Hu X; Dong N
    Acta Biomater; 2019 Apr; 88():280-292. PubMed ID: 30721783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microcarriers with Synthetic Hydrogel Surfaces for Stem Cell Expansion.
    Dias AD; Elicson JM; Murphy WL
    Adv Healthc Mater; 2017 Aug; 6(16):. PubMed ID: 28509413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.