BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

619 related articles for article (PubMed ID: 18760464)

  • 1. Calcium phosphate formation in gelatin matrix using free ion precursors of Ca2+ and phosphate ions.
    Chang MC; DeLong R
    Dent Mater; 2009 Feb; 25(2):261-8. PubMed ID: 18760464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of hydroxyapatite/gelatin nanocomposite using polyacrylamide.
    Chang MC; Kim UK; Douglas WH
    J Biomater Sci Polym Ed; 2009; 20(3):363-75. PubMed ID: 19192361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic-inorganic interaction between hydroxyapatite and gelatin with the aging of gelatin in aqueous phosphoric acid solution.
    Chang MC
    J Mater Sci Mater Med; 2008 Nov; 19(11):3411-8. PubMed ID: 18563537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple large-scale synthesis of hydroxyapatite nanoparticles: in situ observation of crystallization process.
    Kim DW; Cho IS; Kim JY; Jang HL; Han GS; Ryu HS; Shin H; Jung HS; Kim H; Hong KS
    Langmuir; 2010 Jan; 26(1):384-8. PubMed ID: 19810677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluoride incorporation in hydroxyapatite/gelatin nanocomposite.
    Chang MC
    J Mater Sci Mater Med; 2008 Aug; 19(8):2837-43. PubMed ID: 18330679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of hydroxyapatite-gelatin nanocomposite.
    Chang MC; Ko CC; Douglas WH
    Biomaterials; 2003 Aug; 24(17):2853-62. PubMed ID: 12742723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of a biomimetic nanocomposite scaffold for bone tissue engineering via mineralization of gelatin hydrogel and study of mineral transformation in simulated body fluid.
    Azami M; Moosavifar MJ; Baheiraei N; Moztarzadeh F; Ai J
    J Biomed Mater Res A; 2012 May; 100(5):1347-55. PubMed ID: 22374752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The fabrication of nanocomposites via calcium phosphate formation on gelatin-chitosan network and the gelatin influence on the properties of biphasic composites.
    Babaei Z; Jahanshahi M; Rabiee SM
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):370-5. PubMed ID: 25428083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on adsorption mechanism of proteins onto synthetic calcium hydroxyapatites through ionic concentration measurements.
    Kandori K; Masunari A; Ishikawa T
    Calcif Tissue Int; 2005 Mar; 76(3):194-206. PubMed ID: 15711892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solubility of hydroxyapatite by solid titration at pH 3-4.
    Pan HB; Darvell BW
    Arch Oral Biol; 2007 Jul; 52(7):618-24. PubMed ID: 17240349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ.
    Li J; Chen Y; Yin Y; Yao F; Yao K
    Biomaterials; 2007 Feb; 28(5):781-90. PubMed ID: 17056107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic evolution of a porous hydroxyapatite-poly(vinylalcohol)-gelatin composite.
    Nayar S; Sinha A
    Colloids Surf B Biointerfaces; 2004 May; 35(1):29-32. PubMed ID: 15261052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of dilute gelatine on the ultrasonic thermally assisted synthesis of nano hydroxyapatite.
    Brundavanam RK; Jiang ZT; Chapman P; Le XT; Mondinos N; Fawcett D; Poinern GE
    Ultrason Sonochem; 2011 May; 18(3):697-703. PubMed ID: 21168355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization.
    Kumta PN; Sfeir C; Lee DH; Olton D; Choi D
    Acta Biomater; 2005 Jan; 1(1):65-83. PubMed ID: 16701781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electric field-assisted formation of organically modified hydroxyapatite (ormoHAP) spheres in carboxymethylated gelatin gels.
    Heinemann C; Heinemann S; Kruppke B; Worch H; Thomas J; Wiesmann HP; Hanke T
    Acta Biomater; 2016 Oct; 44():135-43. PubMed ID: 27544814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on sintering process of synthetic hydroxyapatite.
    Malina D; Biernat K; Sobczak-Kupiec A
    Acta Biochim Pol; 2013; 60(4):851-5. PubMed ID: 24432345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaffold-free tissue-engineered construct-hydroxyapatite composites generated by an alternate soaking process: potential for repair of bone defects.
    Matsusaki M; Kadowaki K; Tateishi K; Higuchi C; Ando W; Hart DA; Tanaka Y; Take Y; Akashi M; Yoshikawa H; Nakamura N
    Tissue Eng Part A; 2009 Jan; 15(1):55-63. PubMed ID: 18673091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering.
    Zhang Y; Venugopal JR; El-Turki A; Ramakrishna S; Su B; Lim CT
    Biomaterials; 2008 Nov; 29(32):4314-22. PubMed ID: 18715637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties.
    Salarian M; Xu WZ; Wang Z; Sham TK; Charpentier PA
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16918-31. PubMed ID: 25184699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of bioactive hydroxyapatite-calcite nanocomposite for biomedical applications.
    Kumar GS; Girija EK; Thamizhavel A; Yokogawa Y; Kalkura SN
    J Colloid Interface Sci; 2010 Sep; 349(1):56-62. PubMed ID: 20541216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.