BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 18760500)

  • 21. Isolation and characterization of Fe(III)-chelate reductase gene LeFRO1 in tomato.
    Li L; Cheng X; Ling HQ
    Plant Mol Biol; 2004 Jan; 54(1):125-36. PubMed ID: 15159639
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Natural variation for Fe-efficiency is associated with upregulation of Strategy I mechanisms and enhanced citrate and ethylene synthesis in Pisum sativum L.
    Kabir AH; Paltridge NG; Able AJ; Paull JG; Stangoulis JC
    Planta; 2012 Jun; 235(6):1409-19. PubMed ID: 22212907
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The NADH-dependent Fe(3+)-chelate reductases of tomato roots.
    Bagnaresi P; Basso B; Pupillo P
    Planta; 1997; 202(4):427-34. PubMed ID: 9265786
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency.
    Zamboni A; Zanin L; Tomasi N; Pezzotti M; Pinton R; Varanini Z; Cesco S
    BMC Genomics; 2012 Mar; 13():101. PubMed ID: 22433273
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of plant growth promoting traits of bacterial isolates from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) grown under Fe sufficiency and deficiency.
    Scagliola M; Pii Y; Mimmo T; Cesco S; Ricciuti P; Crecchio C
    Plant Physiol Biochem; 2016 Oct; 107():187-196. PubMed ID: 27295343
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of Excess Manganese on the Xylem Sap Protein Profile of Tomato (
    Ceballos-Laita L; Gutierrez-Carbonell E; Takahashi D; Lonsdale A; Abadía A; Doblin MS; Bacic A; Uemura M; Abadía J; López-Millán AF
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33238539
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 'Candidatus Phytoplasma solani' interferes with the distribution and uptake of iron in tomato.
    Buoso S; Pagliari L; Musetti R; Martini M; Marroni F; Schmidt W; Santi S
    BMC Genomics; 2019 Sep; 20(1):703. PubMed ID: 31500568
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elevated carbon dioxide improves plant iron nutrition through enhancing the iron-deficiency-induced responses under iron-limited conditions in tomato.
    Jin CW; Du ST; Chen WW; Li GX; Zhang YS; Zheng SJ
    Plant Physiol; 2009 May; 150(1):272-80. PubMed ID: 19329565
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elevation of NO production increases Fe immobilization in the Fe-deficiency roots apoplast by decreasing pectin methylation of cell wall.
    Ye YQ; Jin CW; Fan SK; Mao QQ; Sun CL; Yu Y; Lin XY
    Sci Rep; 2015 Jun; 5():10746. PubMed ID: 26073914
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L.) plants.
    Borlotti A; Vigani G; Zocchi G
    BMC Plant Biol; 2012 Oct; 12():189. PubMed ID: 23057967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genotypic Variation under Fe Deficiency Results in Rapid Changes in Protein Expressions and Genes Involved in Fe Metabolism and Antioxidant Mechanisms in Tomato Seedlings (Solanum lycopersicum L.).
    Muneer S; Jeong BR
    Int J Mol Sci; 2015 Nov; 16(12):28022-37. PubMed ID: 26602920
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anti-transpirant activity in xylem sap from flooded tomato (Lycopersicon esculentum Mill.) plants is not due to pH-mediated redistributions of root- or shoot-sourced ABA.
    Else MA; Taylor JM; Atkinson CJ
    J Exp Bot; 2006; 57(12):3349-57. PubMed ID: 16940038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring glycine root uptake dynamics in phosphorus and iron deficient tomato plants during the initial stages of plant development.
    Trevisan F; Waschgler F; Tiziani R; Cesco S; Mimmo T
    BMC Plant Biol; 2024 Jun; 24(1):495. PubMed ID: 38831411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time course induction of several key enzymes in Medicago truncatula roots in response to Fe deficiency.
    Andaluz S; Rodríguez-Celma J; Abadía A; Abadía J; López-Millán AF
    Plant Physiol Biochem; 2009; 47(11-12):1082-8. PubMed ID: 19716309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation of transfer cells and H(+)-ATPase expression in tomato roots under P and Fe deficiency.
    Schikora A; Schmidt W
    Planta; 2002 Jun; 215(2):304-11. PubMed ID: 12029480
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Iron deficiency enhances the levels of ascorbate, glutathione, and related enzymes in sugar beet roots.
    Zaharieva TB; Abadía J
    Protoplasma; 2003 Jun; 221(3-4):269-75. PubMed ID: 12802634
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Iron deficiency-associated changes in the composition of the leaf apoplastic fluid from field-grown pear (Pyrus communis L.) trees.
    López-Millán AF; Morales F; Abadía A; Abadía J
    J Exp Bot; 2001 Jul; 52(360):1489-98. PubMed ID: 11457909
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic reprogramming in nodules, roots, and leaves of symbiotic soybean in response to iron deficiency.
    Chu Q; Sha Z; Maruyama H; Yang L; Pan G; Xue L; Watanabe T
    Plant Cell Environ; 2019 Nov; 42(11):3027-3043. PubMed ID: 31283836
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential modulation of Target of Rapamycin activity under single and combined iron and sulfur deficiency in tomato plants.
    Coppa E; Vigani G; Aref R; Savatin D; Bigini V; Hell R; Astolfi S
    Plant J; 2023 Jul; 115(1):127-138. PubMed ID: 36976541
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of cadmium on cork oak (Quercus suber L.) plants grown in hydroponics.
    Gogorcena Y; Larbi A; Andaluz S; Carpena RO; Abadía A; Abadía J
    Tree Physiol; 2011 Dec; 31(12):1401-12. PubMed ID: 22121153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.