BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 18760925)

  • 1. Spatiotemporal characteristics of spontaneous overground walk-to-run transition.
    De Smet K; Segers V; Lenoir M; De Clercq D
    Gait Posture; 2009 Jan; 29(1):54-8. PubMed ID: 18760925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of treadmill acceleration on actual walk-to-run transition.
    Van Caekenberghe I; Segers V; De Smet K; Aerts P; De Clercq D
    Gait Posture; 2010 Jan; 31(1):52-6. PubMed ID: 19796948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overground vs. treadmill walk-to-run transition.
    Van Caekenberghe I; De Smet K; Segers V; De Clercq D
    Gait Posture; 2010 Apr; 31(4):420-8. PubMed ID: 20219374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal characteristics of the walk-to-run and run-to-walk transition when gradually changing speed.
    Segers V; Aerts P; Lenoir M; De Clercq D
    Gait Posture; 2006 Oct; 24(2):247-54. PubMed ID: 16314100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematics of the transition between walking and running when gradually changing speed.
    Segers V; Lenoir M; Aerts P; De Clercq D
    Gait Posture; 2007 Sep; 26(3):349-61. PubMed ID: 17134903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of M. tibialis anterior fatigue on the walk-to-run and run-to-walk transition in non-steady state locomotion.
    Segers V; Lenoir M; Aerts P; De Clercq D
    Gait Posture; 2007 Apr; 25(4):639-47. PubMed ID: 17049861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental study of the influence of the m. tibialis anterior on the walk-to-run transition by means of a powered ankle-foot exoskeleton.
    Malcolm P; Segers V; Van Caekenberghe I; De Clercq D
    Gait Posture; 2009 Jan; 29(1):6-10. PubMed ID: 18620862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of the body centre of mass during actual acceleration across transition speed.
    Segers V; Aerts P; Lenoir M; De Clercq D
    J Exp Biol; 2007 Feb; 210(Pt 4):578-85. PubMed ID: 17267643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental study on the role of the ankle push off in the walk-to-run transition by means of a powered ankle-foot-exoskeleton.
    Malcolm P; Fiers P; Segers V; Van Caekenberghe I; Lenoir M; De Clercq D
    Gait Posture; 2009 Oct; 30(3):322-7. PubMed ID: 19576776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical and physiological aspects of legged locomotion in humans.
    Saibene F; Minetti AE
    Eur J Appl Physiol; 2003 Jan; 88(4-5):297-316. PubMed ID: 12527959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of optic flow on spontaneous overground walk-to-run transition.
    De Smet K; Malcolm P; Lenoir M; Segers V; De Clercq D
    Exp Brain Res; 2009 Mar; 193(4):501-8. PubMed ID: 19034439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joint-level mechanics of the walk-to-run transition in humans.
    Pires NJ; Lay BS; Rubenson J
    J Exp Biol; 2014 Oct; 217(Pt 19):3519-27. PubMed ID: 25104752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed.
    Neptune RR; Sasaki K
    J Exp Biol; 2005 Mar; 208(Pt 5):799-808. PubMed ID: 15755878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treadmill walking and overground walking of human subjects compared by recording sole-floor reaction force.
    Warabi T; Kato M; Kiriyama K; Yoshida T; Kobayashi N
    Neurosci Res; 2005 Nov; 53(3):343-8. PubMed ID: 16182398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. External forces during actual acceleration across transition speed.
    Segers V; Aerts P; Lenoir M; De Clercq D
    J Appl Biomech; 2008 Nov; 24(4):340-50. PubMed ID: 19075303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical mechanism for transitions in phase and frequency of arm and leg swing during walking.
    Kubo M; Wagenaar RC; Saltzman E; Holt KG
    Biol Cybern; 2004 Aug; 91(2):91-8. PubMed ID: 15351887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cadence (steps/min) as an indicator of the walk-to-run transition.
    Chase CJ; Aguiar EJ; Moore CC; Chipkin SR; Staudenmayer J; Tudor-Locke C; Ducharme SW
    Hum Mov Sci; 2023 Aug; 90():103117. PubMed ID: 37336086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reexamination of validity and reliability of the CSA monitor in walking and running.
    Brage S; Wedderkopp N; Franks PW; Andersen LB; Froberg K
    Med Sci Sports Exerc; 2003 Aug; 35(8):1447-54. PubMed ID: 12900703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanics of spontaneous overground walk-to-run transition.
    Segers V; De Smet K; Van Caekenberghe I; Aerts P; De Clercq D
    J Exp Biol; 2013 Aug; 216(Pt 16):3047-54. PubMed ID: 23619411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changing the demand on specific muscle groups affects the walk-run transition speed.
    Bartlett JL; Kram R
    J Exp Biol; 2008 Apr; 211(Pt 8):1281-8. PubMed ID: 18375853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.