BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 18761119)

  • 1. Rapid and selective detection of cysteine based on its induced aggregates of cetyltrimethylammonium bromide capped gold nanoparticles.
    Wang J; Li YF; Huang CZ; Wu T
    Anal Chim Acta; 2008 Sep; 626(1):37-43. PubMed ID: 18761119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays.
    Narayanan R; Lipert RJ; Porter MD
    Anal Chem; 2008 Mar; 80(6):2265-71. PubMed ID: 18290676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The colorimetric detection of Pb2+ by using sodium thiosulfate and hexadecyl trimethyl ammonium bromide modified gold nanoparticles.
    Zhang Y; Leng Y; Miao L; Xin J; Wu A
    Dalton Trans; 2013 Apr; 42(15):5485-90. PubMed ID: 23426019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Useful multivariate kinetic analysis: Size determination based on cystein-induced aggregation of gold nanoparticles.
    Rabbani F; Hormozi Nezhad MR; Abdollahi H
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Nov; 115():588-94. PubMed ID: 23872017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ visualization of self-assembly of charged gold nanoparticles.
    Liu Y; Lin XM; Sun Y; Rajh T
    J Am Chem Soc; 2013 Mar; 135(10):3764-7. PubMed ID: 23432699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionalization of gold nanoparticles with amino acid, beta-amyloid peptides and fragment.
    Majzik A; Fülöp L; Csapó E; Bogár F; Martinek T; Penke B; Bíró G; Dékány I
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):235-41. PubMed ID: 20674288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rapid and sensitive colorimetric assay method for Co2+ based on the modified Au nanoparticles (NPs): understanding the involved interactions from experiments and simulations.
    Leng Y; Zhang F; Zhang Y; Fu X; Weng Y; Chen L; Wu A
    Talanta; 2012 May; 94():271-7. PubMed ID: 22608447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical investigations on ATP-induced aggregation of positive-charged gold nanoparticles.
    Li CM; Li YF; Wang J; Huang CZ
    Talanta; 2010 Jun; 81(4-5):1339-45. PubMed ID: 20441904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Au(III)-CTAB reduction by ascorbic acid: preparation and characterization of gold nanoparticles.
    Khan Z; Singh T; Hussain JI; Hashmi AA
    Colloids Surf B Biointerfaces; 2013 Apr; 104():11-7. PubMed ID: 23298582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes.
    Li L; Li B
    Analyst; 2009 Jul; 134(7):1361-5. PubMed ID: 19562202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregation-resistant water-soluble gold nanoparticles.
    Rouhana LL; Jaber JA; Schlenoff JB
    Langmuir; 2007 Dec; 23(26):12799-801. PubMed ID: 18004894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of glutathione based on nickel hexacyanoferrate film modified Pt ultramicroelectrode by introducing cetyltrimethylammonium bromide and Au nanoparticles.
    He H; Du J; Hu Y; Ru J; Lu X
    Talanta; 2013 Oct; 115():381-5. PubMed ID: 24054606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competitive coordination of Cu2+ between cysteine and pyrophosphate ion: toward sensitive and selective sensing of pyrophosphate ion in synovial fluid of arthritis patients.
    Deng J; Yu P; Yang L; Mao L
    Anal Chem; 2013 Feb; 85(4):2516-22. PubMed ID: 23339558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sensitive resonance light scattering spectrometry of trace Hg2+ with sulfur ion modified gold nanoparticles.
    Fan Y; Long YF; Li YF
    Anal Chim Acta; 2009 Oct; 653(2):207-11. PubMed ID: 19808115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cysteine-mediated aggregation of Au nanoparticles: the development of a H2O2 sensor and oxidase-based biosensors.
    Wang F; Liu X; Lu CH; Willner I
    ACS Nano; 2013 Aug; 7(8):7278-86. PubMed ID: 23829431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A one-step colorimetric method of analysis detection of Hg2+ based on an in situ formation of Au@HgS core-shell structures.
    Zhang F; Zeng L; Yang C; Xin J; Wang H; Wu A
    Analyst; 2011 Jul; 136(13):2825-30. PubMed ID: 21611650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A colorimetric assay method for Co2+ based on thioglycolic acid functionalized hexadecyl trimethyl ammonium bromide modified Au nanoparticles (NPs).
    Zhang F; Zeng L; Zhang Y; Wang H; Wu A
    Nanoscale; 2011 May; 3(5):2150-4. PubMed ID: 21503356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic identification of S-Au interaction in cysteine capped gold nanoparticles.
    Aryal S; B K C R; Dharmaraj N; Bhattarai N; Kim CH; Kim HY
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Jan; 63(1):160-3. PubMed ID: 15955726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasensitive optical detection of trinitrotoluene by ethylenediamine-capped gold nanoparticles.
    Lin D; Liu H; Qian K; Zhou X; Yang L; Liu J
    Anal Chim Acta; 2012 Sep; 744():92-8. PubMed ID: 22935379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand exchange effects in gold nanoparticle assembly induced by oxidative stress biomarkers: homocysteine and cysteine.
    Stobiecka M; Deeb J; Hepel M
    Biophys Chem; 2010 Feb; 146(2-3):98-107. PubMed ID: 19944518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.