These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 18761432)

  • 1. Temperature and pressure dependence of alanine dipeptide studied by multibaric-multithermal molecular dynamics simulations.
    Okumura H; Okamoto Y
    J Phys Chem B; 2008 Sep; 112(38):12038-49. PubMed ID: 18761432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature and pressure denaturation of chignolin: folding and unfolding simulation by multibaric-multithermal molecular dynamics method.
    Okumura H
    Proteins; 2012 Oct; 80(10):2397-416. PubMed ID: 22641605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of a QM/MM force field and molecular mechanics force fields in simulations of alanine and glycine "dipeptides" (Ace-Ala-Nme and Ace-Gly-Nme) in water in relation to the problem of modeling the unfolded peptide backbone in solution.
    Hu H; Elstner M; Hermans J
    Proteins; 2003 Feb; 50(3):451-63. PubMed ID: 12557187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partial multicanonical algorithm for molecular dynamics and Monte Carlo simulations.
    Okumura H
    J Chem Phys; 2008 Sep; 129(12):124116. PubMed ID: 19045015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classical and quantum mechanical/molecular mechanical molecular dynamics simulations of alanine dipeptide in water: comparisons with IR and vibrational circular dichroism spectra.
    Kwac K; Lee KK; Han JB; Oh KI; Cho M
    J Chem Phys; 2008 Mar; 128(10):105106. PubMed ID: 18345930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reoptimization of the AMBER force field parameters for peptide bond (Omega) torsions using accelerated molecular dynamics.
    Doshi U; Hamelberg D
    J Phys Chem B; 2009 Dec; 113(52):16590-5. PubMed ID: 19938868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calibration of force-field dependency in free energy landscapes of peptide conformations by quantum chemical calculations.
    Ono S; Kuroda M; Higo J; Nakajima N; Nakamura H
    J Comput Chem; 2002 Mar; 23(4):470-6. PubMed ID: 11908083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of partial multicanonical molecular dynamics simulations applied to an alanine dipeptide in explicit water solvent.
    Okumura H
    Phys Chem Chem Phys; 2011 Jan; 13(1):114-26. PubMed ID: 21038036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature and pressure effects on conformational equilibria of alanine dipeptide in aqueous solution.
    Takekiyo T; Imai T; Kato M; Taniguchi Y
    Biopolymers; 2004 Feb; 73(2):283-90. PubMed ID: 14755584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating kinetic rates from accelerated molecular dynamics simulations: alanine dipeptide in explicit solvent as a case study.
    de Oliveira CA; Hamelberg D; McCammon JA
    J Chem Phys; 2007 Nov; 127(17):175105. PubMed ID: 17994855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics and reaction coordinate for the isomerization of alanine dipeptide by a forward flux sampling protocol.
    Velez-Vega C; Borrero EE; Escobedo FA
    J Chem Phys; 2009 Jun; 130(22):225101. PubMed ID: 19530790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An application of coupled reference interaction site model/molecular dynamics to the conformational analysis of the alanine dipeptide.
    Freedman H; Truong TN
    J Chem Phys; 2004 Dec; 121(24):12447-56. PubMed ID: 15606265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multibaric-multithermal ensemble molecular dynamics simulations.
    Okumura H; Okamoto Y
    J Comput Chem; 2006 Feb; 27(3):379-95. PubMed ID: 16381079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unravelling the conformational dynamics of the aqueous alanine dipeptide with first-principle molecular dynamics.
    Gaigeot MP
    J Phys Chem B; 2009 Jul; 113(30):10059-62. PubMed ID: 19572624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative theoretical study of dipeptide solvation in water.
    Hugosson HW; Laio A; Maurer P; Rothlisberger U
    J Comput Chem; 2006 Apr; 27(5):672-84. PubMed ID: 16477697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metadynamics as a tool for mapping the conformational and free-energy space of peptides--the alanine dipeptide case study.
    Vymetal J; Vondrásek J
    J Phys Chem B; 2010 Apr; 114(16):5632-42. PubMed ID: 20361773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition pathways in complex systems: Application of the finite-temperature string method to the alanine dipeptide.
    Ren W; Vanden-Eijnden E; Maragakis P; E W
    J Chem Phys; 2005 Oct; 123(13):134109. PubMed ID: 16223277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of conformational changes in the dynamics of small biological molecules: a hybrid MD/RRK approach.
    Segev E; Grumbach M; Gerber RB
    Phys Chem Chem Phys; 2006 Nov; 8(42):4915-23. PubMed ID: 17066182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of quantitative conformer analyses by nuclear magnetic resonance and Raman optical activity spectra for model dipeptides.
    Budesínský M; Danecek P; Bednárová L; Kapitán J; Baumruk V; Bour P
    J Phys Chem A; 2008 Sep; 112(37):8633-40. PubMed ID: 18729424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force-field development and molecular dynamics simulations of ferrocene-peptide conjugates as a scaffold for hydrogenase mimics.
    de Hatten X; Cournia Z; Huc I; Smith JC; Metzler-Nolte N
    Chemistry; 2007; 13(29):8139-52. PubMed ID: 17763506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.