BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 18761449)

  • 1. Fabrication of truncated rhombic dodecahedral Cu2O nanocages and nanoframes by particle aggregation and acidic etching.
    Kuo CH; Huang MH
    J Am Chem Soc; 2008 Sep; 130(38):12815-20. PubMed ID: 18761449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity.
    Huang WC; Lyu LM; Yang YC; Huang MH
    J Am Chem Soc; 2012 Jan; 134(2):1261-7. PubMed ID: 22257266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seed-mediated and iodide-assisted synthesis of gold nanocrystals with systematic shape evolution from rhombic dodecahedral to octahedral structures.
    Chung PJ; Lyu LM; Huang MH
    Chemistry; 2011 Aug; 17(35):9746-52. PubMed ID: 21769954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seed-mediated synthesis of gold nanocrystals with systematic shape evolution from cubic to trisoctahedral and rhombic dodecahedral structures.
    Wu HL; Kuo CH; Huang MH
    Langmuir; 2010 Jul; 26(14):12307-13. PubMed ID: 20557088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hollow boron nitride (BN) nanocages and BN-nanocage-encapsulated nanocrystals.
    Zhu YC; Bando Y; Yin LW; Golberg D
    Chemistry; 2004 Aug; 10(15):3667-72. PubMed ID: 15281150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-crystalline octahedral Au-Ag nanoframes.
    Hong X; Wang D; Cai S; Rong H; Li Y
    J Am Chem Soc; 2012 Nov; 134(44):18165-8. PubMed ID: 23088493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals.
    Niu W; Zheng S; Wang D; Liu X; Li H; Han S; Chen J; Tang Z; Xu G
    J Am Chem Soc; 2009 Jan; 131(2):697-703. PubMed ID: 19102696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological evolution of Cu2O nanocrystals in an acid solution: stability of different crystal planes.
    Hua Q; Shang D; Zhang W; Chen K; Chang S; Ma Y; Jiang Z; Yang J; Huang W
    Langmuir; 2011 Jan; 27(2):665-71. PubMed ID: 21158400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Au nanocube-directed fabrication of Au-Pd core-shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity.
    Lu CL; Prasad KS; Wu HL; Ho JA; Huang MH
    J Am Chem Soc; 2010 Oct; 132(41):14546-53. PubMed ID: 20873739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape evolution of Cu2O nanostructures via kinetic and thermodynamic controlled growth.
    Ng CH; Fan WY
    J Phys Chem B; 2006 Oct; 110(42):20801-7. PubMed ID: 17048890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of Cu2O nanoframes and nanocages by selective oxidative etching at room temperature.
    Sui Y; Fu W; Zeng Y; Yang H; Zhang Y; Chen H; Li Y; Li M; Zou G
    Angew Chem Int Ed Engl; 2010 Jun; 49(25):4282-5. PubMed ID: 20446323
    [No Abstract]   [Full Text] [Related]  

  • 12. Seed-Mediated Growth of Silver Nanocubes in Aqueous Solution with Tunable Size and Their Conversion to Au Nanocages with Efficient Photothermal Property.
    Lin ZW; Tsao YC; Yang MY; Huang MH
    Chemistry; 2016 Feb; 22(7):2326-32. PubMed ID: 26756437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct formation of small Cu2O nanocubes, octahedra, and octapods for efficient synthesis of triazoles.
    Tsai YH; Chanda K; Chu YT; Chiu CY; Huang MH
    Nanoscale; 2014 Aug; 6(15):8704-9. PubMed ID: 24947435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of hollow metal oxide nanocrystals by etching cuprous oxide with metal(II) ions: approach to the essential driving force.
    Sohn JH; Cha HG; Kim CW; Kim DK; Kang YS
    Nanoscale; 2013 Nov; 5(22):11227-33. PubMed ID: 24084833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres.
    Chang Y; Teo JJ; Zeng HC
    Langmuir; 2005 Feb; 21(3):1074-9. PubMed ID: 15667192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of CuO pricky microspheres with tunable size by a simple solution route.
    Xu Y; Chen D; Jiao X
    J Phys Chem B; 2005 Jul; 109(28):13561-6. PubMed ID: 16852697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of Pd Nanoframes by Excavating Solid Nanocrystals for Enhanced Catalytic Properties.
    Wang Z; Wang H; Zhang Z; Yang G; He T; Yin Y; Jin M
    ACS Nano; 2017 Jan; 11(1):163-170. PubMed ID: 28114761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seed-mediated synthesis of palladium nanorods and branched nanocrystals and their use as recyclable Suzuki coupling reaction catalysts.
    Chen YH; Hung HH; Huang MH
    J Am Chem Soc; 2009 Jul; 131(25):9114-21. PubMed ID: 19507854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast laser studies of the photothermal properties of gold nanocages.
    Hu M; Petrova H; Chen J; McLellan JM; Siekkinen AR; Marquez M; Li X; Xia Y; Hartland GV
    J Phys Chem B; 2006 Feb; 110(4):1520-4. PubMed ID: 16471708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant-free sub-2 nm ultrathin triangular gold nanoframes.
    Shahjamali MM; Bosman M; Cao S; Huang X; Cao X; Zhang H; Pramana SS; Xue C
    Small; 2013 Sep; 9(17):2880-6. PubMed ID: 23447112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.