These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

462 related articles for article (PubMed ID: 18761469)

  • 1. Structural proteomics by NMR spectroscopy.
    Shin J; Lee W; Lee W
    Expert Rev Proteomics; 2008 Aug; 5(4):589-601. PubMed ID: 18761469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR screening for rapid protein characterization in structural proteomics.
    Hill JM
    Methods Mol Biol; 2008; 426():437-46. PubMed ID: 18542882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR in the SPINE Structural Proteomics project.
    Ab E; Atkinson AR; Banci L; Bertini I; Ciofi-Baffoni S; Brunner K; Diercks T; Dötsch V; Engelke F; Folkers GE; Griesinger C; Gronwald W; Günther U; Habeck M; de Jong RN; Kalbitzer HR; Kieffer B; Leeflang BR; Loss S; Luchinat C; Marquardsen T; Moskau D; Neidig KP; Nilges M; Piccioli M; Pierattelli R; Rieping W; Schippmann T; Schwalbe H; Travé G; Trenner J; Wöhnert J; Zweckstetter M; Kaptein R
    Acta Crystallogr D Biol Crystallogr; 2006 Oct; 62(Pt 10):1150-61. PubMed ID: 17001092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR and X-ray crystallography, complementary tools in structural proteomics of small proteins.
    Yee AA; Savchenko A; Ignachenko A; Lukin J; Xu X; Skarina T; Evdokimova E; Liu CS; Semesi A; Guido V; Edwards AM; Arrowsmith CH
    J Am Chem Soc; 2005 Nov; 127(47):16512-7. PubMed ID: 16305238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparisons of NMR spectral quality and success in crystallization demonstrate that NMR and X-ray crystallography are complementary methods for small protein structure determination.
    Snyder DA; Chen Y; Denissova NG; Acton T; Aramini JM; Ciano M; Karlin R; Liu J; Manor P; Rajan PA; Rossi P; Swapna GV; Xiao R; Rost B; Hunt J; Montelione GT
    J Am Chem Soc; 2005 Nov; 127(47):16505-11. PubMed ID: 16305237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent developments in structural proteomics for protein structure determination.
    Liu HL; Hsu JP
    Proteomics; 2005 May; 5(8):2056-68. PubMed ID: 15846841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical proteomics from a nuclear magnetic resonance spectroscopy perspective.
    Sem DS
    Expert Rev Proteomics; 2004 Aug; 1(2):165-78. PubMed ID: 15966811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein structure modeling in the proteomics era.
    Fiser A
    Expert Rev Proteomics; 2004 Jun; 1(1):97-110. PubMed ID: 15966803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural proteomics: methods in deriving protein structural information and issues in data management.
    Mylvaganam SE; Prabhakaran M; Tudor SS; Moezzi S; Ramnarayan K
    Biotechniques; 2002 Mar; Suppl():42-6. PubMed ID: 11906007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New approaches towards integrated proteomic databases and depositories.
    Rohlff C
    Expert Rev Proteomics; 2004 Oct; 1(3):267-74. PubMed ID: 15966823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Array-based proteomics: high-throughput expression and purification of IMAGE consortium cDNA clones.
    Albala JS; Humphery-Smith I
    Curr Opin Mol Ther; 1999 Dec; 1(6):680-4. PubMed ID: 19629864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knowledge-based computational intelligence development for predicting protein secondary structures from sequences.
    Shen HB; Yi DL; Yao LX; Yang J; Chou KC
    Expert Rev Proteomics; 2008 Oct; 5(5):653-62. PubMed ID: 18937556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of XAS and NMR techniques for the structure determination of metalloproteins. Examples from the study of copper transport proteins.
    Banci L; Bertini I; Mangani S
    J Synchrotron Radiat; 2005 Jan; 12(Pt 1):94-7. PubMed ID: 15616371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural proteomics of membrane proteins: a survey of published techniques and design of a rational high throughput strategy.
    Willis MS; Koth CM
    Methods Mol Biol; 2008; 426():277-95. PubMed ID: 18542871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bottlenecks and roadblocks in high-throughput XAS for structural genomics.
    Scott RA; Shokes JE; Cosper NJ; Jenney FE; Adams MW
    J Synchrotron Radiat; 2005 Jan; 12(Pt 1):19-22. PubMed ID: 15616360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated technologies and novel techniques to accelerate protein crystallography for structural genomics.
    Manjasetty BA; Turnbull AP; Panjikar S; Büssow K; Chance MR
    Proteomics; 2008 Feb; 8(4):612-25. PubMed ID: 18210369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Approaches for systematic proteome exploration.
    Falk R; Ramström M; Ståhl S; Hober S
    Biomol Eng; 2007 Jun; 24(2):155-68. PubMed ID: 17376740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution NMR in structural genomics.
    Yee A; Gutmanas A; Arrowsmith CH
    Curr Opin Struct Biol; 2006 Oct; 16(5):611-7. PubMed ID: 16942869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of NMR spectroscopy and X-ray crystallography offers unique advantages for elucidation of the structural basis of protein complex assembly.
    Feng W; Pan L; Zhang M
    Sci China Life Sci; 2011 Feb; 54(2):101-11. PubMed ID: 21318479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capillary separations enabling tissue proteomics-based biomarker discovery.
    Guo T; Lee CS; Wang W; DeVoe DL; Balgley BM
    Electrophoresis; 2006 Sep; 27(18):3523-32. PubMed ID: 16977682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.