These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Impact of phosphoproteomics on studies of bacterial physiology. Mijakovic I; Macek B FEMS Microbiol Rev; 2012 Jul; 36(4):877-92. PubMed ID: 22091997 [TBL] [Abstract][Full Text] [Related]
4. Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways. Kosako H; Nagano K Expert Rev Proteomics; 2011 Feb; 8(1):81-94. PubMed ID: 21329429 [TBL] [Abstract][Full Text] [Related]
5. Quantitative analysis of cell signaling and drug action via mass spectrometry-based systems level phosphoproteomics. Tedford NC; Hall AB; Graham JR; Murphy CE; Gordon NF; Radding JA Proteomics; 2009 Mar; 9(6):1469-87. PubMed ID: 19294625 [TBL] [Abstract][Full Text] [Related]
6. Tyrosine-kinases in bacteria: from a matter of controversy to the status of key regulatory enzymes. Bechet E; Guiral S; Torres S; Mijakovic I; Cozzone AJ; Grangeasse C Amino Acids; 2009 Sep; 37(3):499-507. PubMed ID: 19189200 [TBL] [Abstract][Full Text] [Related]
9. Phosphoproteomic approaches to elucidate cellular signaling networks. Schmelzle K; White FM Curr Opin Biotechnol; 2006 Aug; 17(4):406-14. PubMed ID: 16806894 [TBL] [Abstract][Full Text] [Related]
10. Plant phosphoproteomics: a long road ahead. Kersten B; Agrawal GK; Iwahashi H; Rakwal R Proteomics; 2006 Oct; 6(20):5517-28. PubMed ID: 16991200 [TBL] [Abstract][Full Text] [Related]
11. Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Daub H; Olsen JV; Bairlein M; Gnad F; Oppermann FS; Körner R; Greff Z; Kéri G; Stemmann O; Mann M Mol Cell; 2008 Aug; 31(3):438-48. PubMed ID: 18691976 [TBL] [Abstract][Full Text] [Related]
12. Towards functional phosphoproteomics by mapping differential phosphorylation events in signaling networks. de la Fuente van Bentem S; Mentzen WI; de la Fuente A; Hirt H Proteomics; 2008 Nov; 8(21):4453-65. PubMed ID: 18972525 [TBL] [Abstract][Full Text] [Related]
13. Tyrosine phosphoproteomics and identification of substrates of protein tyrosine phosphatase dPTP61F in Drosophila S2 cells by mass spectrometry-based substrate trapping strategy. Chang YC; Lin SY; Liang SY; Pan KT; Chou CC; Chen CH; Liao CL; Khoo KH; Meng TC J Proteome Res; 2008 Mar; 7(3):1055-66. PubMed ID: 18281928 [TBL] [Abstract][Full Text] [Related]
14. Insights from site-specific phosphoproteomics in bacteria. Soufi B; Jers C; Hansen ME; Petranovic D; Mijakovic I Biochim Biophys Acta; 2008 Jan; 1784(1):186-92. PubMed ID: 17881301 [TBL] [Abstract][Full Text] [Related]
16. Large-scale study of phosphoproteins involved in long-term potentiation in the rat dentate gyrus in vivo. Chardonnet S; Le Marechal P; Cheval H; Le Caer JP; Decottignies P; Laprevote O; Laroche S; Davis S Eur J Neurosci; 2008 Jun; 27(11):2985-98. PubMed ID: 18588538 [TBL] [Abstract][Full Text] [Related]
17. Quantitative proteomics and phosphoproteomics reveal novel insights into complexity and dynamics of the EGFR signaling network. Morandell S; Stasyk T; Skvortsov S; Ascher S; Huber LA Proteomics; 2008 Nov; 8(21):4383-401. PubMed ID: 18846509 [TBL] [Abstract][Full Text] [Related]