These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 18761486)

  • 1. Lower threshold estimates at the onset of automated perimetry causing artefacts in perimetrically naive subjects.
    Preetha MM; George R; Ve RS; Raju P; Vijaya L
    Ophthalmic Physiol Opt; 2008 Sep; 28(5):492-6. PubMed ID: 18761486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing threshold visual fields between the Dicon TKS 4000 automated perimeter and the Humphrey Field Analyzer.
    Wong AY; Dodge RM; Remington LA
    J Am Optom Assoc; 1995 Nov; 66(11):706-11. PubMed ID: 8576536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency doubling technology perimetry and standard automated perimetry in migraine.
    Harle DE; Evans BJ
    Ophthalmic Physiol Opt; 2005 May; 25(3):233-9. PubMed ID: 15854070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full-threshold versus Swedish Interactive Threshold Algorithm (SITA) in normal individuals undergoing automated perimetry for the first time.
    Schimiti RB; Avelino RR; Kara-José N; Costa VP
    Ophthalmology; 2002 Nov; 109(11):2084-92; discussion 2092. PubMed ID: 12414419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of catch trial methods used in standard automated perimetry in glaucoma patients.
    Wall M; Doyle CK; Brito CF; Woodward KR; Johnson CA
    J Glaucoma; 2008 Dec; 17(8):626-30. PubMed ID: 19092457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning effect of humphrey matrix frequency doubling technology perimetry in patients with ocular hypertension.
    Centofanti M; Fogagnolo P; Oddone F; Orzalesi N; Vetrugno M; Manni G; Rossetti L
    J Glaucoma; 2008 Sep; 17(6):436-41. PubMed ID: 18794676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of an effective visual field testing strategy for a normal pediatric population.
    Akar Y; Yilmaz A; Yucel I
    Ophthalmologica; 2008; 222(5):329-33. PubMed ID: 18617757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency doubling technology perimetry in normal children.
    Quinn LM; Gardiner SK; Wheeler DT; Newkirk M; Johnson CA
    Am J Ophthalmol; 2006 Dec; 142(6):983-9. PubMed ID: 17046702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repeatability of automated perimetry: a comparison between standard automated perimetry with stimulus size III and V, matrix, and motion perimetry.
    Wall M; Woodward KR; Doyle CK; Artes PH
    Invest Ophthalmol Vis Sci; 2009 Feb; 50(2):974-9. PubMed ID: 18952921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of saccadic vector optokinetic perimetry: a method of automated static perimetry for children using eye tracking.
    Murray IC; Fleck BW; Brash HM; Macrae ME; Tan LL; Minns RA
    Ophthalmology; 2009 Oct; 116(10):2017-26. PubMed ID: 19560207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated perimetry with bright and dark stimuli.
    Wabbels B; Schiefer U; Treutwein B; Benda N; Stercken-Sorrenti G
    Ger J Ophthalmol; 1995 Jul; 4(4):217-21. PubMed ID: 7492933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detectability of glaucomatous changes using SAP, FDT, flicker perimetry, and OCT.
    Nomoto H; Matsumoto C; Takada S; Hashimoto S; Arimura E; Okuyama S; Shimomura Y
    J Glaucoma; 2009 Feb; 18(2):165-71. PubMed ID: 19225357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning effect in visual field testing of healthy subjects using Humphrey Matrix frequency doubling technology perimetry.
    Pierre-Filho Pde T; Gomes PR; Pierre ET; Pierre LM
    Eye (Lond); 2010 May; 24(5):851-6. PubMed ID: 19680272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of staircase procedures for estimating thresholds in automated perimetry.
    Johnson CA; Chauhan BC; Shapiro LR
    Invest Ophthalmol Vis Sci; 1992 Sep; 33(10):2966-74. PubMed ID: 1526745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-dependent normative values for differential luminance sensitivity in automated static perimetry using the Octopus 101.
    Hermann A; Paetzold J; Vonthein R; Krapp E; Rauscher S; Schiefer U
    Acta Ophthalmol; 2008 Jun; 86(4):446-55. PubMed ID: 18070224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the temporal hemifield and nasal hemifield sensitivity in patients with early-onset convergent strabismus.
    Polati M; Malta RF; Alves CA
    Strabismus; 2007; 15(4):181-91. PubMed ID: 18058354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity and specificity of the Humphrey Matrix to detect homonymous hemianopias.
    Taravati P; Woodward KR; Keltner JL; Johnson CA; Redline D; Carolan J; Huang CQ; Wall M
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):924-8. PubMed ID: 18326713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rarebit perimetry in normal subjects: test-retest variability, learning effect, normative range, influence of optical defocus, and cataract extraction.
    Salvetat ML; Zeppieri M; Parisi L; Brusini P
    Invest Ophthalmol Vis Sci; 2007 Nov; 48(11):5320-31. PubMed ID: 17962489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perimetry while moving the eyes: implications for the variability of visual field defects.
    Toepfer A; Kasten E; Guenther T; Sabel BA
    J Neuroophthalmol; 2008 Dec; 28(4):308-19. PubMed ID: 19145132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Values for macular perimetry using the MP-1 microperimeter in normal subjects.
    Shah VA; Chalam KV
    Ophthalmic Res; 2009; 41(1):9-13. PubMed ID: 18849636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.