These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 18761504)

  • 41. Relative contribution of ecological and biological attributes in the fine-grain structure of ant-plant networks.
    Díaz-Castelazo C; Martínez-Adriano CA; Dáttilo W; Rico-Gray V
    PeerJ; 2020; 8():e8314. PubMed ID: 32161686
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Individual and interactive effects of chronic anthropogenic disturbance and rainfall on taxonomic, functional and phylogenetic composition and diversity of extrafloral nectary-bearing plants in Brazilian Caatinga.
    Arnan X; Silva CHF; Reis DQA; Oliveira FMP; Câmara T; Ribeiro EMS; Andersen AN; Leal IR
    Oecologia; 2022 Jan; 198(1):267-277. PubMed ID: 34767071
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cytotoxic activity of Brazilian Cerrado plants used in traditional medicine against cancer cell lines.
    de Mesquita ML; de Paula JE; Pessoa C; de Moraes MO; Costa-Lotufo LV; Grougnet R; Michel S; Tillequin F; Espindola LS
    J Ethnopharmacol; 2009 Jun; 123(3):439-45. PubMed ID: 19501276
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Jumping spiders (Salticidae) enhance the seed production of a plant with extrafloral nectaries.
    Ruhren S; Handel SN
    Oecologia; 1999 May; 119(2):227-230. PubMed ID: 28307972
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Extrafloral Nectary-Bearing Plants Recover Ant Association Benefits Faster and More Effectively after Frost-Fire Events Than Frost.
    Porto GF; Pezzonia JH; Del-Claro K
    Plants (Basel); 2023 Oct; 12(20):. PubMed ID: 37896055
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel indirect defence in Brassicaceae: structure and function of extrafloral nectaries in Brassica juncea.
    Mathur V; Wagenaar R; Caissard JC; Reddy AS; Vet LE; Cortesero AM; Van Dam NM
    Plant Cell Environ; 2013 Mar; 36(3):528-41. PubMed ID: 22889298
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Field biology of Edessa rufomarginata (Hemiptera: Pentatomidae): phenology, behavior, and patterns of host plant use.
    Silva DP; Oliveira PS
    Environ Entomol; 2010 Dec; 39(6):1903-10. PubMed ID: 22182556
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anatomical and histochemical characterization of extrafloral nectaries of Prockia crucis (Salicaceae).
    Thadeo M; Cassino MF; Vitarelli NC; Azevedo AA; Araújo JM; Valente VM; Meira RM
    Am J Bot; 2008 Dec; 95(12):1515-22. PubMed ID: 21628159
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Extrafloral nectar as entrée and elaiosomes as main course for ant visitors to a fireprone, mediterranean-climate shrub.
    Lamont BB; Grey J
    Ecol Evol; 2022 Nov; 12(11):e9500. PubMed ID: 36381400
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ontogeny of the extrafloral nectaries of Vigna adenantha (Leguminosae, Phaseolae) and its relation with floral development.
    Ojeda FS; Hoc PS; Galati BG; García MTA
    Bot Stud; 2014 Dec; 55(1):74. PubMed ID: 28510960
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Defensive effects of extrafloral nectaries in quaking aspen differ with scale.
    Mortensen B; Wagner D; Doak P
    Oecologia; 2011 Apr; 165(4):983-93. PubMed ID: 20931234
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development and differentiation of the extrafloral nectaries from flower buds in Vigna luteola (Leguminosae, Phaseolinae).
    Ojeda FS; Galati BG; GarcÍa MTA
    An Acad Bras Cienc; 2020; 92(suppl 2):e20181172. PubMed ID: 33053068
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultrastructural changes during nectar secretion from extrafloral nectaries of Pithecellobium dulce Benth.
    Sivan P; Rao KS
    Protoplasma; 2023 Sep; 260(5):1339-1347. PubMed ID: 36949343
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of light on direct and indirect defences against herbivores of young plants of Mallotus japonicus demonstrate a trade-off between two indirect defence traits.
    Yamawo A; Hada Y
    Ann Bot; 2010 Jul; 106(1):143-8. PubMed ID: 20472698
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phylogenetic and experimental tests of interactions among mutualistic plant defense traits in Viburnum (adoxaceae).
    Weber MG; Clement WL; Donoghue MJ; Agrawal AA
    Am Nat; 2012 Oct; 180(4):450-63. PubMed ID: 22976009
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The pulvinus endodermal cells and their relation to leaf movement in legumes of the Brazilian cerrado.
    Rodrigues TM; Machado SR
    Plant Biol (Stuttg); 2007 Jul; 9(4):469-77. PubMed ID: 17301934
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Locating evolutionary precursors on a phylogenetic tree.
    Marazzi B; Ané C; Simon MF; Delgado-Salinas A; Luckow M; Sanderson MJ
    Evolution; 2012 Dec; 66(12):3918-30. PubMed ID: 23206146
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Morphological and anatomical traits during development: Highlighting extrafloral nectaries in Passiflora organensis.
    Moraes TS; Rossi ML; Martinelli AP; Dornelas MC
    Microsc Res Tech; 2022 Aug; 85(8):2784-2794. PubMed ID: 35421272
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phenological variation within and among populations of Plathymenia reticulata in Brazilian Cerrado, the Atlantic Forest and transitional sites.
    Goulart MF; Lemos Filho JP; Lovato MB
    Ann Bot; 2005 Sep; 96(3):445-55. PubMed ID: 15972799
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ant protection of the nectaried fern Polypodium plebeium in central Mexico.
    Koptur S; Rico-Gray V; Palacios-Rios M
    Am J Bot; 1998 May; 85(5):736. PubMed ID: 21684956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.